开学活动
搜索
    上传资料 赚现金

    2022年必考点解析沪教版七年级数学第二学期第十四章三角形专题练习试题

    2022年必考点解析沪教版七年级数学第二学期第十四章三角形专题练习试题第1页
    2022年必考点解析沪教版七年级数学第二学期第十四章三角形专题练习试题第2页
    2022年必考点解析沪教版七年级数学第二学期第十四章三角形专题练习试题第3页
    还剩32页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    数学七年级下册第十四章 三角形综合与测试综合训练题

    展开

    这是一份数学七年级下册第十四章 三角形综合与测试综合训练题,共35页。试卷主要包含了下列说法错误的是,如图,直线l1l2,被直线l3等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,ABC的面积为18,AD平分∠BAC,且AD⊥BD于点D,则ADC的面积是( )
    A.8B.10C.9D.16
    2、如图,在中,、分别平分、,过点作直线平行于,分别交、于点、,当大小变化时,线段和的大小关系是
    A.B.C.D.不能确定
    3、如图,和全等,且,对应.若,,,则的长为( )
    A.4B.5C.6D.无法确定
    4、下列说法错误的是( )
    A.任意一个直角三角形都可以被分割成两个等腰三角形
    B.任意一个等腰三角形都可以被分割成两个等腰三角形
    C.任意一个直角三角形都可以被分割成两个直角三角形
    D.任意一个等腰三角形都可以被分割成两个直角三角形
    5、如图,ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,DH⊥BC于H,交BE于G,下列结论中正确的是( )
    ①BCD为等腰三角形;②BF=AC;③CE=BF;④BH=CE.
    A.①②B.①③C.①②③D.①②③④
    6、如图,在Rt△ABC中,∠ACB=90°,∠BAC=40°,直线a∥b,若BC在直线b上,则∠1的度数为( )
    A.40°B.45°C.50°D.60°
    7、下列所给的各组线段,能组成三角形的是:( )
    A.2,11,13B.5,12,7C.5,5,11D.5,12,13
    8、等腰三角形的一个顶角是80°,则它的底角是( ).
    A.40°B.50°C.60°D.70°
    9、如图,直线l1l2,被直线l3、l4所截,并且l3⊥l4,∠1=46°,则∠2等于( )
    A.56°B.34°C.44°D.46°
    10、如图,,于点,与交于点,若,则等于( )
    A.20°B.50°C.70°D.110°
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在等边三角形中,,是边的高线,延长至点,使,则BE的长为__________.
    2、如图,△ABC中,AB平分∠DAC,AB⊥BC,垂足为B,若∠ADC与∠ACB互补,BC=5,则CD的长为_________.
    3、如图,在正方形网格中,∠BAC______∠DAE.(填“>”、“=”或“<”)
    4、如图,已知AB=3,AC=CD=1,∠D=∠BAC=90°,则△ACE的面积是 _____.
    5、已知a,b,c是的三边长,满足,c为奇数,则______.
    三、解答题(10小题,每小题5分,共计50分)
    1、如图是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点为格点,线段的端点都在格点上.要求以为边画一个等腰,且使得点为格点.请在下面的网格图中画出3种不同的等腰.
    2、如图,在中,,,点D是内一点,连接CD,过点C作且,连接AD,BE.求证:.
    3、如图,△ABC是等边三角形,点D、E、F分别同时从A、B、C以同样的速度沿AB、BC、CA方向运动,当点D运动到点B时,三个点都停止运动.
    (1)在运动过程中△DEF是什么形状的三角形,并说明理由;
    (2)若运动到某一时刻时,BE=4,∠DEC=150°,求等边△ABC的周长;
    4、阅读以下材料,并按要求完成相应的任务:
    任务:
    如图3,在四边形中,,,,以为顶点的,、与、边分别交于、两点.请参照阅读材料中的解题方法,你认为结论是否依然成立,若成立,请写出证明过程;若不成立,请说明理由.
    5、如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.
    (1)求证DOB≌AOC;
    (2)求∠CEB的大小;
    (3)如图2,OAB固定不动,保持△OCD的形状和大小不变,将OCD绕点O旋转(OAB和OCD不能重叠),求∠CEB的大小.
    6、如图,CE⊥AB于点E,BF⊥AC于点F,BD=CD.
    (1)求证:△BDE≌△CDF;
    (2)求证:AE=AF.
    7、数学课上,王老师布置如下任务:
    如图,已知∠MAN<45°,点B是射线AM上的一个定点,在射线AN上求作点C,使∠ACB=2∠A.
    下面是小路设计的尺规作图过程.
    作法:①作线段AB的垂直平分线l,直线l交射线AN于点D;
    ②以点B为圆心,BD长为半径作弧,交射线AN于另一点C,则点C即为所求.
    根据小路设计的尺规作图过程,
    (1)使用直尺和圆规,补全图形;(保留作图痕迹)
    (2)完成下面的证明:
    证明:连接BD,BC,
    ∵直线l为线段AB的垂直平分线,
    ∴DA= ,( )(填推理的依据)
    ∴∠A=∠ABD,
    ∴∠BDC=∠A+∠ABD=2∠A.
    ∵BC=BD,
    ∴∠ACB=∠ ,( )(填推理的依据)
    ∴∠ACB=2∠A.
    8、如图,点A,B,C,D在一条直线上,,,.
    (1)求证:.
    (2)若,,求∠F的度数.
    9、已知AMCN,点B在直线AM、CN之间,AB⊥BC于点B.
    (1)如图1,请直接写出∠A和∠C之间的数量关系: .
    (2)如图2,∠A和∠C满足怎样的数量关系?请说明理由.
    (3)如图3,AE平分∠MAB,CH平分∠NCB,AE与CH交于点G,则∠AGH的度数为 .
    10、在等腰中,,点D是BC边上的一个动点(点D不与点B,C重合),连接AD,作等腰,使,,点D,E在直线AC两旁,连接CE.
    (1)如图1,当时,直接写出BC与CE的位置关系;
    (2)如图2,当时,过点A作于点F,请你在图2中补全图形,用等式表示线段BD,CD,之间的数量关系,并证明.
    -参考答案-
    一、单选题
    1、C
    【分析】
    延长BD交AC于点E,根据角平分线及垂直的性质可得:,,依据全等三角形的判定定理及性质可得:,,再根据三角形的面积公式可得:SΔABD=SΔADE,SΔBDC=SΔCDE,得出SΔADC=12SΔABC,求解即可.
    【详解】
    解:如图,延长BD交AC于点E,
    ∵AD平分,,
    ∴,,
    在和中,

    ∴,
    ∴,
    ∴SΔABD=SΔADE,SΔBDC=SΔCDE,
    ∴SΔADC=12SΔABC=12×18=9,
    故选:C.
    【点睛】
    题目主要考查全等三角形的判定和性质,角平分线的定义等,熟练掌握基础知识,进行逻辑推理是解题关键.
    2、C
    【分析】
    由平行线的性质和角平分线的定义可得,则,同理可得,则,可得答案.
    【详解】
    解:,

    平分,



    同理,

    即.
    故选:C
    【点睛】
    本题主要考查了等腰三角形的判定,平行线的性质,角平分线的定义,熟练掌握等腰三角形的判定定理,平行线的性质定理,角平分线的定义是解题的关键.
    3、A
    【分析】
    全等三角形对应边相等,对应角相等,根据题中信息得出对应关系即可.
    【详解】
    ∵和全等,,对应

    ∴AB=DF=4
    故选:A.
    【点睛】
    本题考查了全等三角形的概念及性质,应注意①对应边、对应角是对两个三角形而言的,指两条边、两个角的关系,而对边、对角是指同一个三角形的边和角的位置关系②可以进一步推广到全等三角形对应边上的高相等,对应角的平分线相等,对应边上的中线相等,周长及面积相等③全等三角形有传递性.
    4、B
    【分析】
    根据等腰三角形和直角三角形的性质判断各选项即可得出答案.
    【详解】
    解:、任意一个直角三角形一定能分成两个等腰三角形,本选项正确,不符合题意;
    、任意一个等腰三角形不一定能分成两个等腰三角形,本选项错误,符合题意;
    、任意一个直角三角形都可以被分割成两个直角三角形,本选项正确,不符合题意;
    、任意一个等腰三角形都可以被分割成两个直角三角形,本选项正确,不符合题意;
    故选:B.
    【点睛】
    本题考查了等腰三角形和直角三角形的知识,解题的关键是能判断等腰三角形及直角三角形,可动手操作进行判断.
    5、C
    【分析】
    根据∠ABC=45°,CD⊥AB可得出BD=CD;利用AAS判定Rt△DFB≌Rt△DAC,从而得出BF=AC;再利用AAS判定Rt△BEA≌Rt△BEC,即可得到CE=BF;由CE=BF,BH=BC,在三角形BCF中,比较BF、BC的长度即可得到CE<BH.
    【详解】
    解:∵CD⊥AB,∠ABC=45°,
    ∴△BCD是等腰直角三角形.
    ∴BD=CD,故①正确;
    在Rt△DFB和Rt△DAC中,
    ∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,
    ∴∠DBF=∠DCA.
    又∵∠BDF=∠CDA=90°,BD=CD,
    ∴△DFB≌△DAC.
    ∴BF=AC,故②正确;
    在Rt△BEA和Rt△BEC中
    ∵BE平分∠ABC,
    ∴∠ABE=∠CBE.
    又∵BE=BE,∠BEA=∠BEC=90°,
    ∴Rt△BEA≌Rt△BEC.
    ∴CE=AC=BF,故③正确;
    ∵CE=AC=BF,BH=BC,
    在△BCF中,∠CBE=∠ABC=22.5°,∠DCB=∠ABC=45°,
    ∴∠BFC=112.5°,
    ∴BF<BC,
    ∴CE<BH,故④错误;
    故选:C.
    【点睛】
    本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.在复杂的图形中有45°的角,有垂直,往往要用到等腰直角三角形,要注意掌握并应用此点.
    6、C
    【分析】
    根据三角形内角和定理确定,然后利用平行线的性质求解即可.
    【详解】
    解:∵,,
    ∴,
    ∵,
    ∴,
    故选:C.
    【点睛】
    题目主要考查平行线的性质,三角形内角和定理等,熟练掌握运用平行线的性质是解题关键.
    7、D
    【分析】
    根据三角形三边关系定理,判断选择即可.
    【详解】
    ∵2+11=13,
    ∴A不符合题意;
    ∵5+7=12,
    ∴B不符合题意;
    ∵5+5=10<11,
    ∴C不符合题意;
    ∵5+12=17>13,
    ∴D符合题意;
    故选D.
    【点睛】
    本题考查了构成三角形的条件,熟练掌握三角形三边关系是解题的关键.
    8、B
    【分析】
    依据三角形的内角和是180°以及等腰三角形的性质即可解答.
    【详解】
    解:(180°-80°)÷2
    =100°÷2
    =50°;
    答:底角为50°.
    故选:B.
    【点睛】
    本题主要考查三角形的内角和定理及等腰三角形的两个底角相等的特点.
    9、C
    【分析】
    依据l1∥l2,即可得到∠3=∠1=46°,再根据l3⊥l4,可得∠2=90°﹣46°=44°.
    【详解】
    解:如图:
    ∵l1∥l2,∠1=46°,
    ∴∠3=∠1=46°,
    又∵l3⊥l4,
    ∴∠2=90°﹣46°=44°,
    故选:C.
    【点睛】
    本题考查了平行线性质以及三角形内角和,平行线的性质:两直线平行,同位角相等以及三角形内角和是180°.
    10、C
    【分析】
    由与,即可求得的度数,又由,根据两直线平行,同位角相等,即可求得的度数.
    【详解】
    解:∵,
    ∴,
    ∵,
    ∴,
    ∵,
    ∴.
    故选:C.
    【点睛】
    题目主要考查了平行线的性质与垂直的性质、三角形内角和定理,熟练掌握平行线的性质是解题关键.
    二、填空题
    1、3
    【分析】
    由等腰三角形三线合一的性质,得到AD=DC=1,由BE=BC+CE不难求解.
    【详解】
    解:三角形是等边三角形,
    BC=AC=2,
    又 是边的高线,
    DC=,
    =1,

    故答案为:3.
    【点睛】
    本题考查了等边三角形的性质,掌握等腰三角形三线合一的性质是解本题的关键.
    2、10
    【分析】
    构造,再证得,求得EB=BC,再通过等量代换、等角的补角相等求得∠E=∠CDE,则CE=2BC=10.
    【详解】
    解:延长AD.和CB交于点E.
    ∵AB平分∠DAC
    ∴∠EAB=∠CAB
    又∵
    ∴∠ABE=∠ABC
    又∵AB=AB

    ∴BC=EB=5,∠E=∠ACB,
    又∵
    ∴∠ACB=∠CDE
    ∴∠E=∠CDE
    ∴.CD=CE
    又∵CE=2BC=10
    ∴CD=10
    故答案为:10.
    【点睛】
    本题考查了全等三角形的性质和判定,等角的补角相等,能根据全等三角形的性质找到角与角之间的关系是解答此题的关键.
    3、
    【分析】
    找到点,连接(见解析),根据等腰直角三角形的性质、网格特点即可得.
    【详解】
    解;如图,找到点,连接,
    则是等腰直角三角形,

    又是等腰直角三角形,

    故答案为:.
    【点睛】
    本题考查了等腰直角三角形、角的大小比较,正确找出点是解题关键.
    4、##
    【分析】
    先根据三角形全等的判定定理证出,再根据全等三角形的性质可得,然后利用三角形的面积公式即可得.
    【详解】
    解:在和中,,


    则的面积是,
    故答案为:.
    【点睛】
    本题考查了三角形全等的判定定理与性质,熟练掌握三角形全等的判定方法是解题关键.
    5、7
    【分析】
    绝对值与平方的取值均0,可知,,可得a、b的值,根据三角形三边关系求出c的取值范围,进而得到c的值.
    【详解】
    解:

    由三角形三边关系可得
    为奇数
    故答案为:7.
    【点睛】
    本题考查了绝对值、平方的非负性,三角形的三边关系等知识点.解题的关键是确定所求边长的取值范围.
    三、解答题
    1、答案见解析
    【分析】
    AB为4个等边三角形组成的平行四边形的对角线,因此只要找到另一腰也4个等边三角形组成的平行四边形的对角线即可
    【详解】
    解:如图,
    ……
    [答案不唯一]
    【点睛】
    本题考查等腰三角形的绘图,掌握等边三角形和等腰三角形性质即可.
    2、证明见解析.
    【分析】
    先根据角的和差可得,再根据三角形全等的判定定理证出,然后根据全等三角形的性质即可得证.
    【详解】
    证明:,




    在和中,,


    【点睛】
    本题考查了三角形全等的判定定理与性质等知识点,熟练掌握三角形全等的判定方法是解题关键.
    3、(1)△DEF是等边三角形,理由见解析(2)等边△ABC的周长为
    【分析】
    (1)利用△DEF是等边三角形的性质以及三点的运动情况,求证和,进而证明,最后即可说明△DEF是等边三角形.
    (2)利用题(1)的条件即∠DEC=150°,得出是含角的直角三角形,求出,最后求解出等边△ABC的长,最后即可求出等边△ABC的周长.
    【详解】
    (1)解:△DEF是等边三角形,
    证明:由点D、E、F的运动情况可知:,
    △ABC是等边三角形,
    ,,
    ,

    在与中,



    同理可证,进而有,

    故△DEF是等边三角形.
    (2)解:由(1)可知△DEF是等边三角形,且,
    ,,,


    在中,,



    等边△ABC的周长为.
    【点睛】
    本题主要是考查了全等三角形的性质及判定、等边三角形的判定及性质和含角直角三角形的性质,熟练利用等边三角形的性质,找到相等条件,进而证明全等三角形,综合利用全等三角形以及含角直角三角形的性质,求出对应边长,是解决该题的关键.
    4、成立,证明见解析
    【分析】
    根据阅读材料将△ADF旋转120°再证全等即可求得EF= BE+DF .
    【详解】
    解:成立.
    证明:将绕点顺时针旋转,得到,
    ,,,,,
    ,、、三点共线,

    ,,,


    【点睛】
    本题考查旋转中的三角形全等,读懂材料并运用所学的全等知识是本题关键.
    5、(1)见详解;(2)120°;(2)120°.
    【分析】
    (1)如图1,根据等边三角形的性质得到OD=OC=OA=OB,∠COD=∠AOB=60°,则利用根据“SAS”判断△AOC≌△BOD;
    (2)利用△AOC≌△BOD得到∠CAO=∠DBO,然后根据三角形内角和可得到∠AEB=∠AOB=60°,即可求出答案;
    (3)如图2,与(1)的方法一样可证明△AOC≌△BOD;则∠CAO=∠DBO,然后根据三角形内角和可求出∠AEB=∠AOB=60°,即可得到答案.
    【详解】
    (1)证明:如图1,
    ∵△ODC和△OAB都是等边三角形,
    ∴OD=OC=OA=OB,∠COD=∠AOB=60°,
    ∴∠BOD=∠AOC=120°,
    在△AOC和△BOD中
    ∴△AOC≌△BOD;
    (2)解:∵△AOC≌△BOD,
    ∴∠CAO=∠DBO,
    ∵∠1=∠2,
    ∴∠AEB=∠AOB=60°,
    ∴;
    (3)解:如图2,
    ∵△ODC和△OAB都是等边三角形,
    ∴OD=OC=OA=OB,∠COD=∠AOB=60°,
    ∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,
    在△AOC和△BOD中
    ∴△AOC≌△BOD;
    ∴∠CAO=∠DBO,
    ∵∠1=∠2,
    ∴∠AEB=∠AOB=60°,
    ∴;
    即∠CEB的大小不变.
    【点睛】
    本题考查了几何变换综合题:熟练掌握旋转的性质、等边三角形的性质和全等三角形的判定与性质;利用类比的方法解决(3)小题.
    6、(1)见解析;(2)见解析
    【分析】
    (1)根据CE⊥AB,BF⊥AC就可以得出∠BED=∠CFD=90°,就可以由AAS得出结论;
    (2)由(1)得DE=DF,就可以得出BF=CE,由AAS就可以得出△AFB≌△AEC就可以得出结论.
    【详解】
    证明:(1)∵CE⊥AB,BF⊥AC,
    ∴∠BED=∠CFD=90°,
    在△BED和△CFD中,

    ∴△BED≌△CFD(AAS);
    (2)∵△BED≌△CFD,
    ∴DE=DF,
    ∴BD+DF=CD+DE,
    ∴BF=CE,
    在△ABF和△ACE中,

    ∴△ABF≌△ACE(AAS),
    ∴AE=AF.
    【点睛】
    本题考查了垂直的性质的运用,全等三角形的判定与性质的运用,等式的性质的运用,解答时证明三角形全等是关键.
    7、(1)见解析;(2)DB;线段垂直平分线上的点到线段两端的距离相等;BDC; 等边对等角.
    【分析】
    (1)根据题目中的小路的尺规作图过程,直接作图即可.
    (2)根据垂直平分线的性质以及等边对等角进行解答即可.
    【详解】
    解:(1) 根据题目中的小路的设计步骤,补全的图形如图所示;
    (2)解:证明:连接BD,BC,
    ∵直线l为线段AB的垂直平分线,
    ∴DA= DB ,(线段垂直平分线上的点到线段两端的距离相等)(填推理的依据)
    ∴∠A=∠ABD,
    ∴∠BDC=∠A+∠ABD=2∠A.
    ∵BC=BD,
    ∴∠ACB=∠BDC ,(等边对等角)(填推理的依据)
    ∴∠ACB=2∠A.
    【点睛】
    本题主要是考查了尺规作图能力以及垂直平分线和等边对等角的性质,熟练掌握垂直平分线和等边对等角的性质,是解决该题的关键.
    8、(1)见解析;(2)
    【分析】
    (1)根据平行线的性质可得,根据线段的和差关系可得,进而根据即证明;
    (2)根据三角形内角和定理以及补角的意义求得∠E,进而根据(1)的结论即可求得∠F.
    【详解】
    (1)证明:


    又,
    (2)解:,,
    【点睛】
    本题考查了平行线的性质,三角形内角和定理,三角形全等的性质与判定,掌握全等三角形的性质与判定是解题的关键.
    9、(1)∠A+∠C=90°;(2)∠C﹣∠A=90°,见解析;(3)45°
    【分析】
    (1)过点B作BE∥AM,利用平行线的性质即可求得结论;
    (2)过点B作BE∥AM,利用平行线的性质即可求得结论;
    (3)利用(2)的结论和三角形的外角等于和它不相邻的两个内角的和即可求得结论.
    【详解】
    (1)过点B作BE∥AM,如图,
    ∵BE∥AM,
    ∴∠A=∠ABE,
    ∵BE∥AM,AM∥CN,
    ∴BE∥CN,
    ∴∠C=∠CBE,
    ∵AB⊥BC,
    ∴∠ABC=90°,
    ∴∠A+∠C=∠ABE+∠CBE=∠ABC=90°.
    故答案为:∠A+∠C=90°;
    (2)∠A和∠C满足:∠C﹣∠A=90°.理由:
    过点B作BE∥AM,如图,
    ∵BE∥AM,
    ∴∠A=∠ABE,
    ∵BE∥AM,AM∥CN,
    ∴BE∥CN,
    ∴∠C+∠CBE=180°,
    ∴∠CBE=180°﹣∠C,
    ∵AB⊥BC,
    ∴∠ABC=90°,
    ∴∠ABE+∠CBE=90°,
    ∴∠A+180°﹣∠C=90°,
    ∴∠C﹣∠A=90°;
    (3)设CH与AB交于点F,如图,
    ∵AE平分∠MAB,
    ∴∠GAF=∠MAB,
    ∵CH平分∠NCB,
    ∴∠BCF=∠BCN,
    ∵∠B=90°,
    ∴∠BFC=90°﹣∠BCF,
    ∵∠AFG=∠BFC,
    ∴∠AFG=90°﹣∠BCF.
    ∵∠AGH=∠GAF+∠AFG,
    ∴∠AGH=∠MAB+90°﹣∠BCN=90°﹣(∠BCN﹣∠MAB).
    由(2)知:∠BCN﹣∠MAB=90°,
    ∴∠AGH=90°﹣45°=45°.
    故答案为:45°.
    【点睛】
    本题考查平行线的性质以及三角形外角的性质,由题作出辅助线是解题的关键.
    10、
    (1)
    (2)或,见解析
    【分析】
    (1)根据已知条件求出∠B=∠ACB=45°,证明△BAD≌△CAE,得到∠ACE=∠B=45°,求出∠BCE=∠ACB+∠ACE=90°,即可得到结论;
    (2)根据题意作图即可,证明≌.得到,,,推出.延长EF到点G,使,证明≌,推出.由此得到.同理可证.
    (1)
    解:,,
    ∴∠B=∠ACB=45°,
    ∵,
    ∴,即∠BAD=∠CAE,
    ∵,,
    ∴△BAD≌△CAE,
    ∴∠ACE=∠B=45°,
    ∴∠BCE=∠ACB+∠ACE=90°,
    ∴;
    (2)
    解:如图,补全图形;

    证明:∵,
    ∴.
    又∵,,
    ∴≌.
    ∴,,.
    ∵,
    ∴.
    ∴.
    延长EF到点G,使.
    ∵,
    ∴.
    ∴.
    ∵,
    ∴.
    ∴.
    ∵,
    ∴≌.
    ∴.
    ∵,
    ∴.
    如图,同理可证.

    【点睛】
    此题考查了全等三角形的判定及性质,等腰三角形的性质,熟记全等三角形的判定及性质是解题的关键.掌握分类思想解题是难点.
    从正方形的一个顶点引出夹角为的两条射线,并连接它们与该顶点的两对边的交点构成的基本平面几何模型称为半角模型.半角模型可证出多个几何结论,例如:
    如下图1,在正方形中,以为顶点的,、与、边分别交于、两点.易证得.
    大致证明思路:如图2,将绕点顺时针旋转,得到,由可得、、三点共线,,进而可证明,故.

    相关试卷

    初中沪教版 (五四制)第十四章 三角形综合与测试同步练习题:

    这是一份初中沪教版 (五四制)第十四章 三角形综合与测试同步练习题,共33页。试卷主要包含了如图,点A,如图,下列叙述正确的是等内容,欢迎下载使用。

    初中第十四章 三角形综合与测试测试题:

    这是一份初中第十四章 三角形综合与测试测试题,共33页。

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试达标测试:

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试达标测试,共30页。试卷主要包含了如图,ABC≌DEF,点B,有下列说法等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map