开学活动
搜索
    上传资料 赚现金

    2022年强化训练沪教版七年级数学第二学期第十四章三角形达标测试试题(含答案解析)

    2022年强化训练沪教版七年级数学第二学期第十四章三角形达标测试试题(含答案解析)第1页
    2022年强化训练沪教版七年级数学第二学期第十四章三角形达标测试试题(含答案解析)第2页
    2022年强化训练沪教版七年级数学第二学期第十四章三角形达标测试试题(含答案解析)第3页
    还剩29页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂达标检测题

    展开

    这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂达标检测题,共32页。试卷主要包含了如图,为估计池塘岸边A等内容,欢迎下载使用。
    沪教版七年级数学第二学期第十四章三角形达标测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、已知等腰三角形有一个角为50°,则这个等腰三角形的底角度数是( ).
    A.65° B.65°或80° C.50°或80° D.50°或65°
    2、以下长度的三条线段,能组成三角形的是( )
    A.2,3,5 B.4,4,8 C.3,4.8,7 D.3,5,9
    3、如图,在△ABC中,BD平分∠ABC,∠C=2∠CDB,AB=12,CD=3,则△ABC的周长为(  )

    A.21 B.24 C.27 D.30
    4、如图,在中,AD是角平分线,且,若,则的度数是( )

    A.45° B.50° C.52° D.58°
    5、如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,OA=15米,OB=10米,A、B间的距离不可能是(  )

    A.5米 B.10米 C.15米 D.20米
    6、若三条线段中a=3,b=5,c为奇数,那么以a、b、c为边组成的三角形共有( )
    A.1个 B.2个 C.3个 D.4个
    7、如图,将△OAB绕点O逆时针旋转80°得到△OCD,若∠A的度数为110°,∠D的度数为40°,则∠AOD的度数是( )

    A.50° B.60° C.40° D.30°
    8、如图,E为线段BC上一点,∠ABE=∠AED=∠ECD=90°,AE=ED,BC=20,AB=8,则BE的长度为( )

    A.12 B.10 C.8 D.6
    9、如图,等腰中,,,于D,点O是线段AD上一点,点P是BA延长线上一点,若,则下列结论:①;②;③是等边三角形;④.其中正确的是( )

    A.①③④ B.①②③ C.②③④ D.①②③④
    10、如图,≌,和是对应角,和是对应边,则下列结论中一定成立的是( )

    A. B.
    C. D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,______.

    2、等腰三角形中,一条边长是2cm,另一条边长是3cm,这个等腰三角形的周长是________.
    3、如图,在中,,点D,E在边BC上,,若,,则CE的长为______.

    4、如图,在△ABC中,点D为BC边的中点,点E为AC上一点,将∠C沿DE翻折,使点C落在AB上的点F处,若∠AEF=50°,则∠A的度数为__.

    5、如图,在△ABC中,AB=AC.在AB、AC上分别截取AP,AQ,使AP=AQ.再分别以点P,Q为圆心,以大于PQ的长为半径作弧,两弧在∠BAC内交于点R,作射线AR,交BC于点D.若BC=6,则BD的长为______________.

    三、解答题(10小题,每小题5分,共计50分)
    1、针对于等腰三角形三线合一的这条性质,老师带领同学们做了进一步的猜想和证明,提问:如果一个三角形中,一个角的平分线和它所对的边的中线重合,那么这个三角形是等腰三角形.
    已知:在△ABC中,AD 平分∠CAB,交BC 边于点 D,且CD=BD,
    求证:AB=AC.
    以下是甲、乙两位同学的作法.
    甲:根据角平分线和中线的性质分别能得出一组角等和一组边等,再加一组公共边,可证△ACD≌△ABD,所以这个三角形为等腰三角形;
    乙:延长AD到E,使DE=AD,连接BE,可证△ACD≌△EBD,依据已知条件可推出AB=AC,所以这个三角形为等腰三角形
    (1)对于甲、乙两人的作法,下列判断正确的是( );
    A.两人都正确 B.甲正确,乙错误 C.甲错误,乙正确
    (2)选择一种你认为正确的作法,并证明.

    2、如图,,,E为BC中点,DE平分.

    (1)求证:平分;
    (2)求证:;
    (3)求证:.
    3、如图,是等边三角形,D点是BC上一点,,于点E,CE交AD于点P.求的度数.

    4、如图,已知点B,F,C,E在同一直线上,AB∥DE,BF=CE,AB=ED,求证:∠A=∠D.

    5、已知:在△ABC中,AD平分∠BAC,AE=AC.求证:AD∥CE.

    6、如图,AD是的高,CE是的角平分线.若,,求的度数.

    7、如图,将△ABC绕点A逆时针旋转得到△ADE,点D在BC上,已知∠B=70°,求∠CDE的大小.

    8、已知,在△ABC中,∠BAC=30°,点D在射线BC上,连接AD,∠CAD=,点D关于直线AC的对称点为E,点E关于直线AB的对称点为F,直线EF分别交直线AC,AB于点M,N,连接AF,AE,CE.
    (1)如图1,点D在线段BC上.
    ①根据题意补全图1;
    ②∠AEF = (用含有的代数式表示),∠AMF= °;
    ③用等式表示线段MA,ME,MF之间的数量关系,并证明.
    (2)点D在线段BC的延长线上,且∠CAD<60°,直接用等式表示线段MA,ME,MF之间的数量关系,不证明.

    9、如图,在△ABC中, AB=AC,AD是△ABC的中线,BE平分∠ABC交AD于点E,连接EC.求证:CE平分∠ACB.

    10、如图,灯塔B在灯塔A的正东方向,且.灯塔C在灯塔A的北偏东20°方向,灯塔C在灯塔B的北偏西50°方向.

    (1)求的度数;
    (2)一轮船从B地出发向北偏西50°方向匀速行驶,5h后到达C地,求轮船的速度.

    -参考答案-
    一、单选题
    1、D
    【分析】
    可以是底角,也可以是顶角,分情况讨论即可.
    【详解】
    当角为底角时,底角就是,
    当角为等腰三角形的顶角时,底角为,
    因此这个等腰三角形的底角为或.
    故选:D.
    【点睛】
    本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.
    2、C
    【分析】
    由题意根据三角形的三条边必须满足:任意两边之和大于第三边,任意两边之差小于第三边进行分析即可.
    【详解】
    解:A、2+3=5,不能组成三角形,不符合题意;
    B、4+4=8,不能组成三角形,不符合题意;
    C、3+4.8>7,能组成三角形,符合题意;
    D、3+5<9,不能组成三角形,不符合题意.
    故选:C.
    【点睛】
    本题主要考查对三角形三边关系的理解应用.注意掌握判断是否可以构成三角形,只要判断两个较小的数的和大于最大的数即可.
    3、C
    【分析】
    根据题意在AB上截取BE=BC,由“SAS”可证△CBD≌△EBD,可得∠CDB=∠BDE,∠C=∠DEB,可证∠ADE=∠AED,可得AD=AE,进而即可求解.
    【详解】
    解:如图,在AB上截取BE=BC,连接DE,

    ∵BD平分∠ABC,
    ∴∠ABD=∠CBD,
    在△CBD和△EBD中,

    ∴△CBD≌△EBD(SAS),
    ∴∠CDB=∠BDE,∠C=∠DEB,
    ∵∠C=2∠CDB,
    ∴∠CDE=∠DEB,
    ∴∠ADE=∠AED,
    ∴AD=AE,
    ∴△ABC的周长=AD+AE+BE+BC+CD=AB+AB+CD=27,
    故选:C.
    【点睛】
    本题考查全等三角形的判定和性质以及等腰三角形的性质,注意掌握添加恰当辅助线构造全等三角形是解题的关键.
    4、A
    【分析】
    根据角平分线性质求出∠DCA,再根据等腰三角形的性质和三角形的内角和定理求解∠C和∠B即可.
    【详解】
    解:∵AD是角平分线,,
    ∴∠DCA==30°,
    ∵AD=AC,
    ∴∠C=(180°-∠DCA)÷2=75°,
    ∴∠B=180°-∠BAC-∠C=180°-60°-75°=45°,
    故选:A.
    【点睛】
    本题考查角平分线的性质、等腰三角形的性质、三角形的内角和定理,熟练掌握等腰三角形的性质是解答的关键.
    5、A
    【分析】
    根据三角形的三边关系得出5<AB<25,根据AB的范围判断即可.
    【详解】
    解:连接AB,

    根据三角形的三边关系定理得:
    15﹣10<AB<15+10,
    即:5<AB<25,
    ∴A、B间的距离在5和25之间,
    ∴A、B间的距离不可能是5米;
    故选:A.
    【点睛】
    本题主要考查对三角形的三边关系定理的理解和掌握,能正确运用三角形的三边关系定理是解此题的关键.
    6、C
    【分析】
    根据三角形的三边关系,得到合题意的边,进而求得三角形的个数.
    【详解】
    解:c的范围是:5﹣3<c<5+3,即2<c<8.
    ∵c是奇数,
    ∴c=3或5或7,有3个值.
    则对应的三角形有3个.
    故选:C.
    【点睛】
    本题主要考查了三角形三边关系,准确分析判断是解题的关键.
    7、A
    【分析】
    根据旋转的性质求解再利用三角形的内角和定理求解再利用角的和差关系可得答案.
    【详解】
    解: 将△OAB绕点O逆时针旋转80°得到△OCD,

    ∠A的度数为110°,∠D的度数为40°,


    故选A
    【点睛】
    本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.
    8、A
    【分析】
    利用角相等和边相等证明,利用全等三角形的性质以及边的关系,即可求出BE的长度.
    【详解】
    解:由题意可知:∠ABE=∠AED=∠ECD=90°,
    ,,

    在和中,




    故选:A.
    【点睛】
    本题主要是考查了全等三角形的判定和性质,熟练通过已知条件证明三角形全等,利用全等性质及边的关系,来求解未知边的长度,这是解决本题的主要思路.
    9、A
    【分析】
    ①利用等边对等角得:∠APO=∠ABO,∠DCO=∠DBO,则∠APO+∠DCO=∠ABO+∠DBO=∠ABD,据此即可求解;②因为点O是线段AD上一点,所以BO不一定是∠ABD的角平分线,可作判断;③证明∠POC=60°且OP=OC,即可证得△OPC是等边三角形;④证明△OPA≌△CPE,则AO=CE,得AC=AE+CE=AO+AP.
    【详解】
    解:①如图1,连接OB,

    ∵AB=AC,AD⊥BC,
    ∴BD=CD,∠BAD=∠BAC=×120°=60°,
    ∴OB=OC,∠ABC=90°﹣∠BAD=30°
    ∵OP=OC,
    ∴OB=OC=OP,
    ∴∠APO=∠ABO,∠DCO=∠DBO,
    ∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°,故①正确;
    ②由①知:∠APO=∠ABO,∠DCO=∠DBO,
    ∵点O是线段AD上一点,
    ∴∠ABO与∠DBO不一定相等,
    则∠APO与∠DCO不一定相等,故②不正确;
    ③∵∠APC+∠DCP+∠PBC=180°,
    ∴∠APC+∠DCP=150°,
    ∵∠APO+∠DCO=30°,
    ∴∠OPC+∠OCP=120°,
    ∴∠POC=180°﹣(∠OPC+∠OCP)=60°,
    ∵OP=OC,
    ∴△OPC是等边三角形,故③正确;
    ④如图2,在AC上截取AE=PA,

    ∵∠PAE=180°﹣∠BAC=60°,
    ∴△APE是等边三角形,
    ∴∠PEA=∠APE=60°,PE=PA,
    ∴∠APO+∠OPE=60°,
    ∵∠OPE+∠CPE=∠CPO=60°,
    ∴∠APO=∠CPE,
    ∵OP=CP,
    在△OPA和△CPE中,

    ∴△OPA≌△CPE(SAS),
    ∴AO=CE,
    ∴AC=AE+CE=AO+AP,
    ∴AB=AO+AP,故④正确;
    正确的结论有:①③④,
    故选:A.
    【点睛】
    本题主要考查了全等三角形的判定与性质、等腰三角形的判定与性质、等边三角形的判定与性质等知识,正确作出辅助线是解决问题的关键.
    10、D
    【分析】
    根据全等三角形的性质求解即可.
    【详解】
    解:∵≌,和是对应角,和是对应边,
    ∴,,
    ∴,
    ∴选项A、B、C错误,D正确,
    故选:D.
    【点睛】
    本题考查全等三角形的性质,熟练掌握全等三角形的性质是解答的关键.
    二、填空题
    1、180度
    【分析】
    如图,连接 记的交点为 先证明再利用三角形的内角和定理可得答案.
    【详解】
    解:如图,连接 记的交点为





    故答案为:
    【点睛】
    本题考查的是三角形的内角和定理,作出合适的辅助线构建三角形是解本题的关键.
    2、或
    【分析】
    因为已知长度为和两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论.
    【详解】
    解:①当为底时,其它两边都为,
    、、可以构成三角形,
    周长为;
    ②当为底时,其它两边都为,
    、、可以构成三角形,
    周长为;
    故答案为:或.
    【点睛】
    本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,解题的关键是利用分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要.
    3、5
    【分析】
    由题意易得,然后可证,则有,进而问题可求解.
    【详解】
    解:∵,
    ∴,
    ∵,
    ∴(ASA),
    ∴,
    ∵,,
    ∴,
    ∴;
    故答案为5.
    【点睛】
    本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.
    4、65°度
    【分析】
    由点D为BC边的中点,得到BD=CD,根据折叠的性质得到DF=CD,∠EFD=∠C,得到DF=BD,根据等腰三角形的性质得到∠BFD=∠B,由三角形的内角和和平角的定义得到∠A=∠AFE,于是得到结论.
    【详解】
    解:∵点D为BC边的中点,
    ∴BD=CD,
    ∵将∠C沿DE翻折,使点C落在AB上的点F处,
    ∴DF=CD,∠EFD=∠C,
    ∴DF=BD,
    ∴∠BFD=∠B,
    ∵∠A=180°-∠C-∠B,∠AFE=180°-∠EFD-∠DFB,
    ∴∠A=∠AFE,
    ∵∠AEF=50°,
    ∴∠A=(180°-50°)=65°.
    故答案为:65°.
    【点睛】
    本题考查的是图形翻折变换的图形能够重合的性质,以及等边对等角的性质,熟知折叠的性质是解答此题的关键.
    5、3
    【分析】
    根据题意依据等腰三角形的性质,即可得到BD=BC,进而分析计算即可得出结论.
    【详解】
    解:由题可得,AR平分∠BAC,
    又∵AB=AC,
    ∴AD是三角形ABC的中线,
    ∴BD=BC=×6=3.
    故答案为:3.
    【点睛】
    本题主要考查基本作图以及等腰三角形的性质,注意掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.
    三、解答题
    1、(1)C ;(2)见解析
    【分析】
    (1)甲同学证明的两个三角形全等,没有边边角的判定,故错误,而乙的证明则正确,因此可作出判断;
    (2)按照乙的分析方法进行即可.
    【详解】
    (1)甲同学证明的两个三角形全等,边边角不能判定两个三角形全等,故错误,而乙的证明则正确,
    故选C;
    (2)依据题意,延长AD至E,使DE=AD,连接BE,如图.
    ∵D为BC中点.
    ∴.
    在△CAD和△BED中

    ∴△CAD≌△BED(SAS).
    ∴,
    ∵AD平分∠BAC,



    ∴AB=AC
    ∴△ABC为等腰三角形

    【点睛】
    本题考查了全等三角形的判定与性质,等腰三角形的判定,关键是构造辅助线得到全等三角形.
    2、(1)见解析;(2)见解析;(3)见解析
    【分析】
    (1)延长DE交AB延长线于F,由∠B=∠C=90°,推出AB∥CD,则∠CDE=∠F,再由DE平分∠ADC,即可推出∠ADF=∠F,得到AD=AF,即△ADF是等腰三角形,然后证明△CDE≌△BFE得到DE=FE,即E是DF的中点,即可证明AE平分∠BAD;
    (2)由(1)即可用三线合一定理证明;
    (3)由△CDE≌△BFE,得到CD=BF,则AD=AF=AB+BF=AB+CD.
    【详解】
    解:(1)如图所示,延长DE交AB延长线于F,
    ∵∠B=∠C=90°,
    ∴AB∥CD,
    ∴∠CDE=∠F,
    ∵DE平分∠ADC,
    ∴∠CDE=∠ADE,
    ∴∠ADF=∠F,
    ∴AD=AF,
    ∴△ADF是等腰三角形,
    ∵E是BC的中点,
    ∴CE=BE,
    ∴△CDE≌△BFE(AAS),
    ∴DE=FE,
    ∴E是DF的中点,
    ∴AE平分∠BAD;

    (2)由(1)得△ADF是等腰三角形,AD=AF,E是DF的中点,
    ∴AE⊥DE;
    (3)∵△CDE≌△BFE,
    ∴CD=BF,
    ∴AD=AF=AB+BF=AB+CD.
    【点睛】
    本题主要考查了平行线的性质与判定,全等三角形的性质与判定,等腰三角形的性质与判定,熟知相关知识是解题的关键.
    3、
    【分析】
    由题意易得,,则有,然后可得,进而可证,则有,最后问题可求解.
    【详解】
    解:∵是等边三角形,
    ∴,,
    ∵,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴(SAS),
    ∴,
    ∵,
    ∴.
    【点睛】
    本题主要考查等边三角形的性质、含30度直角三角形的性质及全等三角形的性质与判定,熟练掌握等边三角形的性质、含30度直角三角形的性质及全等三角形的性质与判定是解题的关键.
    4、见解析
    【分析】
    根据平行线的性质得出∠B=∠E,进而利用SAS证明,利用全等三角形的性质解答即可.
    【详解】
    证明:,

    即.


    在和中,



    【点睛】
    本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证是解题的关键.
    5、见解析.
    【分析】
    先根据角平分线的定义得到∠BAD=∠BAC,再根据等腰三角形的性质和三角形外角定理得到∠E=∠BAC,从而得到∠BAD=∠E,即可证明AD∥CE.
    【详解】
    解:∵AD平分∠BAC,
    ∴∠BAD=∠BAC,
    ∵AE=AC,
    ∴∠E=∠ACE,
    ∵∠E+∠ACE=∠BAC,
    ∴∠E=∠BAC,
    ∴∠BAD=∠E,
    ∴AD∥CE.
    【点睛】
    本题考查了角平分线的定义,等腰三角形的性质,平行线的判定,三角形外角定理,熟知相关定理并灵活应用是解题关键.
    6、
    【分析】
    AD是的高,有;由知;CE是的角平分线可得;,;在中,.
    【详解】
    解:∵AD是的高



    ∵CE是的角平分线



    ∴在中,.
    【点睛】
    本题考查了角平分线.解题的关键在于正确表示各角度之间的数量关系.
    7、
    【分析】
    先由旋转的性质证明再利用等边对等角证明从而可得答案.
    【详解】
    解: 把△ABC绕点A逆时针旋转得到△ADE,∠B=70°,



    【点睛】
    本题考查的是旋转的性质,等腰三角形的性质,掌握“旋转前后的对应角相等与等边对等角”是解本题的关键.
    8、(1)①见解析; ②,;③MF=MA+ME,证明见解析;(2)
    【分析】
    (1)①按照要求旋转作图即可;②由旋转和等腰三角形性质解出∠AEF;再由三角形外角定理求出∠AMF; ③在FE上截取GF=ME,连接AG,证明△AFG ≌△AEM且△AGM为等边三角形后即可证得MF=MA+ME;
    (2)根据题意画出图形,根据含30°的直角三角形的性质,即可得到结论.
    【详解】
    解:(1)①补全图形如下图:

    ②∵∠CAE=∠DAC=,
    ∴∠BAE=30°+
    ∴∠FAE=2×(30°+)
    ∴∠AEF==60°-;
    ∵∠AMF=∠CAE+∠AEF=+60°-=60°,
    故答案是:60°-,60°;
    ③MF=MA+ME.
    证明:在FE上截取GF=ME,连接AG .

    ∵点D关于直线AC的对称点为E,
    ∴△ADC ≌△AEC.
    ∴∠CAE =∠CAD =.
    ∵∠BAC=30°,
    ∴∠EAN=30°+.
    又∵点E关于直线AB的对称点为F,
    ∴AB垂直平分EF.
    ∴AF=AE,∠FAN=∠EAN =30°+,
    ∴∠F=∠AEF=.
    ∴∠AMG =.
    ∵AF=AE,∠F=∠AEF, GF=ME,
    ∴△AFG ≌△AEM.
    ∴AG =AM.
    又∵∠AMG=,
    ∴△AGM为等边三角形.
    ∴MA=MG.
    ∴MF=MG+GF=MA+ME.
    (2),理由如下:
    如图1所示,
    ∵点E与点F关于直线AB对称,
    ∴∠ANM=90°,NE=NF,
    又∵∠NAM=30°,
    ∴AM=2MN,
    ∴AM=2NE+2EM =MF+ME,
    ∴MF=AM-ME;

    如图2所示,
    ∵点E与点F关于直线AB对称,
    ∴∠ANM=90°,NE=NF,
    ∵∠NAM=30°,
    ∴AM=2NM,
    ∴AM=2MF+2NF=2MF+NE+NF=ME+MF,
    ∴MF=MA-ME;

    综上所述:MF=MA-ME.
    【点睛】
    本题考查轴对称、三角形全等判定与性质、等边三角形判定与性质,掌握这些是本题关键.
    9、见解析
    【分析】
    根据等腰三角形的性质,可得∠ADB=∠ADC=90°,∠ABC=∠ACB,BD=CD,从而得到△BDE≌△CDE,进而得到∠DCE=∠DBE,再由BE平分∠ABC,可得 ,进而得到,即可求证.
    【详解】
    解:∵AB=AC,AD是△ABC的中线,
    ∴∠ADB=∠ADC=90°,∠ABC=∠ACB,BD=CD,
    ∵DE=DE,
    ∴△BDE≌△CDE,
    ∴∠DCE=∠DBE,
    ∵BE平分∠ABC,
    ∴ ,
    ∴,
    ∴,
    ∴CE平分∠ACB.
    【点睛】
    本题主要考查了等腰三角形的性质,全等三角形的判定和性质,熟练掌握等腰三角形的两底角相等,等腰三角形“三线合一”是解题的关键.
    10、(1)70°;(2)15km/h
    【分析】
    (1)根据题意得∠BAC=70°,∠ABC=40°,根据三角形的内角和定理即可求得∠ACB;
    (2)根据等腰三角形的判定可得BC=AB=75km,进而由速度=路程÷时间求解即可.
    【详解】
    解:(1)根据题意得∠BAC=70°,∠ABC=40°,
    ∴∠ACB=180°-∠BAC-∠ABC=180°-70°-40°=70°;
    (2)∵∠BAC=∠ACB=70°,
    ∴BC=AB=75km,
    ∴轮船的速度为75÷5=15(km/h).
    【点睛】
    本题考查方位角、等腰三角形的判定、三角形的内角和定理,理解方位角,熟练掌握等腰三角形的等角对等边是解答的关键.

    相关试卷

    沪教版 (五四制)七年级下册第十四章 三角形综合与测试练习题:

    这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试练习题,共34页。试卷主要包含了下列四个命题是真命题的有,如图,在中,AD等内容,欢迎下载使用。

    数学七年级下册第十四章 三角形综合与测试练习题:

    这是一份数学七年级下册第十四章 三角形综合与测试练习题,共33页。试卷主要包含了如图,在中,AD,下列说法不正确的是等内容,欢迎下载使用。

    数学七年级下册第十四章 三角形综合与测试测试题:

    这是一份数学七年级下册第十四章 三角形综合与测试测试题,共31页。试卷主要包含了下列说法错误的是等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map