![2021-2022学年基础强化沪教版七年级数学第二学期第十四章三角形章节练习试题(含答案及详细解析)第1页](http://img-preview.51jiaoxi.com/2/3/12708608/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年基础强化沪教版七年级数学第二学期第十四章三角形章节练习试题(含答案及详细解析)第2页](http://img-preview.51jiaoxi.com/2/3/12708608/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年基础强化沪教版七年级数学第二学期第十四章三角形章节练习试题(含答案及详细解析)第3页](http://img-preview.51jiaoxi.com/2/3/12708608/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步测试题
展开
这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试同步测试题,共30页。试卷主要包含了下列四个命题是真命题的有等内容,欢迎下载使用。
沪教版七年级数学第二学期第十四章三角形章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AB=AC,点D、E分别在AB、AC上,补充一个条件后,仍不能判定△ABE≌△ACD的是( )A.∠B=∠C B.AD=AE C.BE=CD D.∠AEB=∠ADC2、如图,ABC的面积为18,AD平分∠BAC,且AD⊥BD于点D,则ADC的面积是( )A.8 B.10 C.9 D.163、如图,工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是( )A.两点确定一条直线B.两点之间,线段最短C.三角形具有稳定性D.三角形的任意两边之和大于第三边4、在下列长度的四根木棒中,能与3cm,9cm的两根木棒首尾顺次相接钉成一个三角形的是( )A.3cm B.6cm C.10cm D.12cm5、如图,ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,DH⊥BC于H,交BE于G,下列结论中正确的是( )①BCD为等腰三角形;②BF=AC;③CE=BF;④BH=CE.A.①② B.①③ C.①②③ D.①②③④6、下列长度的三条线段能组成三角形的是( )A.3 4 8 B.4 4 10 C.5 6 10 D.5 6 117、如图,钝角中,为钝角,为边上的高,为的平分线,则与、之间有一种等量关系始终不变,下面有一个规律可以表示这种关系,你发现的是( )A. B.C. D.8、有两边相等的三角形的两边长为,,则它的周长为( )A. B. C. D.或9、下列四个命题是真命题的有( )①同位角相等;②相等的角是对顶角;③直角三角形两个锐角互余;④三个内角相等的三角形是等边三角形.A.1个 B.2个 C.3个 D.4个10、我们称网格线的交点为格点.如图,在4×4的长方形网格中有两个格点A、B,连接AB,在网格中再找一个格点C,使得△ABC是等腰直角三角形,则满足条件的格点C的个数是( )A.3 B.4 C.5 D.6第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、等腰三角形的两边长分别是和,则它的周长为________.2、如图,方格纸中是9个完全相同的正方形,则∠1+∠2的值为 _____.3、如图,在中,,,E为BC延长线上一点,与的平分线相交于点D,则∠D的度数为______.4、如图,在ABC中,AB=AC,∠A=36°,点D在AC上,且BD=BC,则∠BDC=_______.5、如图,两根旗杆CA,DB相距20米,且CA⊥AB,DB⊥AB,某人从旗杆DB的底部B点沿BA走向旗杆CA底部A点.一段时间后到达点M,此时他分别仰望旗杆的顶点C和D,两次视线的夹角∠CMD=90°,且CM=DM.已知旗杆BD的高为12米,该人的运动速度为每秒2米,则这个人从点B到点M所用时间是 _____秒.三、解答题(10小题,每小题5分,共计50分)1、如图,是等边三角形,,分别交AB,AC于点D,E.(1)求证:是等边三角形;(2)点F在线段DE上,点G在外,,,求证:.2、直线l经过点A,在直线l上方,.(1)如图1,,过点B,C作直线l的垂线,垂足分别为D、E.求证:(2)如图2,D,A,E三点在直线l上,若(为任意锐角或钝角),猜想线段DE、BD、CE有何数量关系?并给出证明.(3)如图3,过点B作直线l上的垂线,垂足为F,点D是BF延长线上的一个动点,连结AD,作,使得,连结DE,CE.直线l与CE交于点G.求证:G是CE的中点.3、如图,点D,E在△ABC的边BC上,AB=AC,AD=AE,求证:BD=CE.4、如图,在中,,,点D在边AC上,且线段BD绕着点B按逆时针方向旋转120°能与BE重合,点F是ED与AB的交点.(1)求证:;(2)若,求的度数.5、如图,等边△ABC中,点D在BC上,CE=CD,∠BCE=60°,连接AD、BE.(1)如图1,求证:AD=BE;(2)如图2,延长AD交BE于点F,连接DE、CF,在不添加任何辅助线和其它字母的情况下,请直接写出等于120°的角.6、如图,△ABC中,AB=AC,D为BC边的中点,AF⊥AD,垂足为A.求证:∠1=∠27、 “三等分角”是被称为几何三大难题的三个古希腊作图难题之一.如图1所示的“三等分角仪”是利用阿基米德原理做出的.这个仪器由两根有槽的棒PA,PB组成,两根棒在P点相连并可绕点P旋转,C点是棒PA上的一个固定点,点A,O可在棒PA,PB内的槽中滑动,且始终保持OA=OC=PC.∠AOB为要三等分的任意角.则利用“三等分角仪”可以得到∠APB =∠AOB.我们把“三等分角仪”抽象成如图2所示的图形,完成下面的证明.已知:如图2,点O,C分别在∠APB的边PB,PA上,且OA=OC=PC.求证:∠APB =∠AOB.8、如图,在中,,,点D是内一点,连接CD,过点C作且,连接AD,BE.求证:.9、如图,点A,B,C,D在一条直线上,,,.求证:.10、如图,是的中线,分别过点、作及其延长线的垂线,垂足分别为、.(1)求证:;(2)若的面积为8,的面积为6,求的面积. -参考答案-一、单选题1、C【分析】根据全等三角形的判定定理进行判断即可.【详解】解:根据题意可知:AB=AC,,若,则根据可以证明△ABE≌△ACD,故A不符合题意;若AD=AE,则根据可以证明△ABE≌△ACD,故B不符合题意;若BE=CD,则根据不可以证明△ABE≌△ACD,故C符合题意;若∠AEB=∠ADC,则根据可以证明△ABE≌△ACD,故D不符合题意;故选:C.【点睛】本题考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解本题的关键.2、C【分析】延长BD交AC于点E,根据角平分线及垂直的性质可得:,,依据全等三角形的判定定理及性质可得:,,再根据三角形的面积公式可得:,,得出,求解即可.【详解】解:如图,延长BD交AC于点E,∵AD平分,,∴,,在和中,,∴,∴,∴,,∴,故选:C.【点睛】题目主要考查全等三角形的判定和性质,角平分线的定义等,熟练掌握基础知识,进行逻辑推理是解题关键.3、C【分析】根据三角形具有稳定性进行求解即可.【详解】解:工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是三角形具有稳定性,故选C.【点睛】本题主要考查了三角形的稳定性,熟知三角形具有稳定性是解题的关键.4、C【分析】设第三根木棒的长度为cm,再确定三角形第三边的范围,再逐一分析各选项即可得到答案.【详解】解:设第三根木棒的长度为cm,则 所以A,B,D不符合题意,C符合题意,故选C【点睛】本题考查的是三角形的三边的关系,掌握“利用三角形的三边关系确定第三边的范围”是解本题的关键.5、C【分析】根据∠ABC=45°,CD⊥AB可得出BD=CD;利用AAS判定Rt△DFB≌Rt△DAC,从而得出BF=AC;再利用AAS判定Rt△BEA≌Rt△BEC,即可得到CE=BF;由CE=BF,BH=BC,在三角形BCF中,比较BF、BC的长度即可得到CE<BH.【详解】解:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD,故①正确;在Rt△DFB和Rt△DAC中,∵∠DBF=90°﹣∠BFD,∠DCA=90°﹣∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.又∵∠BDF=∠CDA=90°,BD=CD,∴△DFB≌△DAC.∴BF=AC,故②正确;在Rt△BEA和Rt△BEC中∵BE平分∠ABC,∴∠ABE=∠CBE.又∵BE=BE,∠BEA=∠BEC=90°,∴Rt△BEA≌Rt△BEC.∴CE=AC=BF,故③正确;∵CE=AC=BF,BH=BC,在△BCF中,∠CBE=∠ABC=22.5°,∠DCB=∠ABC=45°,∴∠BFC=112.5°,∴BF<BC,∴CE<BH,故④错误;故选:C.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.在复杂的图形中有45°的角,有垂直,往往要用到等腰直角三角形,要注意掌握并应用此点.6、C【分析】根据三角形的任意两边之和大于第三边对各选项分析判断求解即可.【详解】解:A.∵3+4<8,∴不能组成三角形,故本选项不符合题意;B.∵4+4<10,∴不能组成三角形,故本选项不符合题意;C.∵5+6>10,∴能组成三角形,故本选项符合题意;D.∵5+6=11,∴不能组成三角形,故本选项不符合题意;故选:C.【点睛】本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解决问题的关键.7、B【分析】根据三角形内角和定理、角平分线的性质、三角形外角的性质依次推理即可得出结论.【详解】解:由三角形内角和知∠BAC=180°-∠2-∠1,∵AE为∠BAC的平分线,∴∠BAE=∠BAC=(180°-∠2-∠1).∵AD为BC边上的高,∴∠ADC=90°=∠DAB+∠ABD.又∵∠ABD=180°-∠2,∴∠DAB=90°-(180°-∠2)=∠2-90°,∴∠EAD=∠DAB+∠BAE=∠2-90°+(180°-∠2-∠1)=(∠2-∠1).故选:B【点睛】本题主要考查了三角形的内角和定理,角平分线的定义、三角形外角性质及三角形的高的定义,解答的关键是找到已知角和所求角之间的联系.8、D【分析】有两边相等的三角形,是等腰三角形,两边分别为和,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.【详解】解:当4为底时,其它两边都为5,4、5、5可以构成三角形,周长为;当4为腰时,其它两边为4和5,4、4、5可以构成三角形,周长为.综上所述,该等腰三角形的周长是或.故选:D.【点睛】本题考查了等腰三角形的性质和三角形的三边关系,解题的关键是对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.9、B【分析】利用平行线的性质、对顶角的定义、直角三角形的性质及等边三角形的性质分别判断后即可确定正确的选项.【详解】①两直线平行,同位角相等,故错误,是假命题;②相等的角是对顶角,错误,是假命题;③直角三角形两个锐角互余,正确,是真命题;④三个内角相等的三角形是等边三角形,正确,是真命题,综上所述真命题有2个,故选:B.【点睛】本题考查了命题真假的判断,要说明一个命题是正确的,需要根据命题的题设和已学的有关公理、定理进行说明、推理、证明,正确的命题叫做真命题,错误的命题叫做假命题.10、A【分析】根据题意,结合图形,分两种情况讨论:①AB为等腰直角△ABC底边;②AB为等腰直角△ABC其中的一条腰.【详解】解:如图:分情况讨论:①AB为等腰直角△ABC底边时,符合条件的格点C点有0个;②AB为等腰直角△ABC其中的一条腰时,符合条件的格点C点有3个.故共有3个点,故选:A.【点睛】本题考查了等腰三角形的性质和判定;解答本题关键是根据题意,画出符合实际条件的图形,数形结合的思想是数学解题中很重要的解题思想.二、填空题1、22【分析】分两种情况讨论:当腰长为时, 当腰长为时,再结合三角形的三边关系,从而可得答案.【详解】解: 等腰三角形的两边长分别是和, 当腰长为时,此时 不符合题意,舍去,当腰长为时,此时 符合题意,所以三角形的周长为: 故答案为:【点睛】本题考查的是等腰三角形的定义,三角形的三边关系,掌握“等腰三角形的两腰相等,再分情况讨论”是解本题的关键.2、【分析】如图(见解析),先根据三角形全等的判定定理证出,再根据全等三角形的性质可得,由此即可得出答案.【详解】解:如图,在和中,,,,,故答案为:.【点睛】本题考查了三角形全等的判定定理与性质等知识点,正确找出两个全等三角形是解题关键.3、20°度【分析】根据角平分线的性质得到,再利用三角形外角的性质计算.【详解】解:∵与的平分线相交于点D,∴,∵∠ACE=∠A+∠ABC,∠DCE=∠D+∠DBC,∴∠D=∠DCE-∠DBC=,故答案为:20°.【点睛】此题考查了三角形的外角性质及角平分线的性质,熟记三角形外角的性质定理是解题的关键.4、72°72度【分析】根据AB=AC求出∠ACB,利用BD=BC,求出∠BDC的度数.【详解】解:∵AB=AC,∠A=36°,∴,∵BD=BC,∴∠BDC=∠ACB=72°,故答案为:72°.【点睛】此题考查了等腰三角形的性质:等边对等角,熟记性质是解题的关键.5、4【分析】先说明,再利用证明,然后根据全等三角形的性质可得米,再根据线段的和差求得BM的长,最后利用时间=路程÷速度计算即可.【详解】解:∵,∴,又∵,∴,∴,在和中,,∴,∴米,(米),∵该人的运动速度,他到达点M时,运动时间为s.故答案为:4.【点睛】本题主要考查了全等三角形的判定与性质,根据题意证得是解答本题的关键.三、解答题1、(1)见详解;(2)见详解【分析】(1)由题意易得,然后根据平行线的性质可得,进而问题可求证;(2)连接AG,由题意易得AB=AC,然后可知△ABF≌△ACG,则有AF=AG,进而可得∠FAG=60°,最后问题可求证.【详解】证明:(1)∵是等边三角形,∴,∵DE∥BC,∴,∴,∴是等边三角形;(2)连接AG,如图所示:∵是等边三角形,∴,AB=AC,∵,,∴△ABF≌△ACG(SAS),∴,∵,∴,∴是等边三角形,∴.【点睛】本题主要考查全等三角形及等边三角形的性质与判定,熟练掌握全等三角形及等边三角形的性质与判定是解题的关键.2、(1)见解析;(2)猜想:,见解析;(3)见解析【分析】(1)先证明和,再根据证明即可;(2)根据AAS证明得,,进一步可得出结论;(3)分别过点C、E作,,同(1)可证,,得出CM=EN,证明得,从而可得结论.【详解】解:(1)证明:∵,,∴,∴∵,∴∴,在与中,∴(2)猜想:,∵∴,∴,在与中∴,∴,,∴(3)分别过点C、E作,,同(1)可证,,∴,∴,∵,, ∴在与中∴,∴,∴G为CE的中点.【点睛】本题考查了全等三角形的判定与性质、垂线的定义、角的互余关系,证得△ABD≌△CAE是解决问题的关键.3、见解析【分析】过A作AF⊥BC于F,根据等腰三角形的性质得出BF=CF,DF=EF,即可求出答案.【详解】证明:如图,过A作AF⊥BC于F,∵AB=AC,AD=AE,∴BF=CF,DF=EF,∴BF-DF=CF-EF,∴BD=CE.【点睛】本题考查了等腰三角形的性质的应用,注意:等腰三角形的底边上的高,底边上的中线,顶角的平分线互相重合.4、(1)见解析;(2)【分析】(1)由旋转的性质可得,,再证明,结合 从而可得结论;(2)由可得,再利用等腰三角形的性质求解,再利用三角形的内角和定理可得答案.【详解】证明:(1)∵线段BD绕着点B按逆时针方向旋转120°能与BE重合,∴,,∵,,∴,∴,∴(SAS),∴.(2)解:由(1)知 ,,,∴,∴.【点睛】本题考查的是全等三角形的判定与性质,旋转的性质,等腰三角形的性质,掌握“旋转前后的对应边相等,对应角相等”是解本题的关键.5、(1)见解析;(2)等于120°的角有∠BFC、∠BDE、∠DFE=120°.【分析】(1)利用SAS证明△ADC≌△BEC,即可证明AD=BE;(2)证明△CDE为等边三角形,可求得∠BDE=120°;利用全等三角形的性质可求得∠BFD=∠BCA=60°,推出∠DFE=120°;同理可推出∠BFC=∠AFC+∠BFD=120°.【详解】(1)证明:等边△ABC中,CA=CB,∠ACB=60°,∵CE=CD,∠BCE=60°,∴△ADC≌△BEC(SAS),∴AD=BE;(2)等于120°的角有∠BFC、∠BDE、∠DFE=120°.∵CE=CD,∠BCE=60°,∴△CDE为等边三角形,∴∠CDE=60°,∴∠BDE=120°;∵△ADC≌△BEC,∴∠DAC=∠EBC,又∠BDF=∠ADC,∴∠BFD=∠BCA=60°,∴∠DFE=120°;同理可求得∠AFC=∠ABC=60°,∴∠BFC=∠AFC+∠BFD=120°;综上,等于120°的角有∠BFC、∠BDE、∠DFE=120°.【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,熟记各图形的性质并准确识图是解题的关键.6、见详解.【分析】根据等腰三角形三合一性质以及等边对等角性质得出AD⊥BC,∠B=∠C,根据AF⊥AD,利用在同一平面内垂直同一直线的两直线平行得出AF∥BC,利用平行线性质得出∠1=∠B,∠2=∠C即可.【详解】证明:∵△ABC中,AB=AC,D为BC边的中点,∴AD⊥BC,∠B=∠C,∵AF⊥AD,∴AF∥BC,∴∠1=∠B,∠2=∠C,∴∠1=∠2.【点睛】本题考查等腰三角形性质,平行线的判定与性质,掌握等腰三角形性质,平行线的判定与性质是解题关键.7、见解析【分析】由,得出为等腰三角形,由外角的性质及等量代换得,再次利用外角的性质及等量代换得,即可证明.【详解】解:,为等腰三角形,,由外角的性质得:,,再由外角的性质得:,,.【点睛】本题考查了等腰三角形、外角的性质、解题的关键是掌握外角的性质及等量代换的思想进行求解.8、证明见解析.【分析】先根据角的和差可得,再根据三角形全等的判定定理证出,然后根据全等三角形的性质即可得证.【详解】证明:,,,,,在和中,,,.【点睛】本题考查了三角形全等的判定定理与性质等知识点,熟练掌握三角形全等的判定方法是解题关键.9、见解析【分析】根据平行线的性质得出,运用“角角边”证明△AEB≌△CFD即可.【详解】证明:∵,∴,在△AEB和△CFD中,∴△AEB≌△CFD,∴.【点睛】本题考查了全等三角形的判定与性质,解题关键是熟练运用全等三角形的判定定理进行证明.10、(1)见解析(2)的面积为20.【分析】(1)根据已知条件得到、,然后利用全等三角形的判定,进行证明即可.(2)分别根据和的面积,用CF表示AF、DF,通过,得到,,用CF表示出AE的长,最后利用面积公式求解即可.(1)(1)解:由题意可知: 是的中线 在与中 .(2)解:的面积为8,的面积为6.,即 ,即 由(1)可知:, .【点睛】本题主要是考查了全等三角形的判定和性质,熟练根据条件证明三角形全等,利用其性质,证明对应边相等,这是解决本题的关键.
相关试卷
这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试当堂检测题,共37页。试卷主要包含了下列命题是真命题的是等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试习题,共34页。试卷主要包含了如图等内容,欢迎下载使用。
这是一份初中数学第十四章 三角形综合与测试课后测评,共27页。试卷主要包含了如图等内容,欢迎下载使用。