初中第十四章 三角形综合与测试练习题
展开
这是一份初中第十四章 三角形综合与测试练习题,共36页。试卷主要包含了如图,点A,下列命题是真命题的是,下列说法错误的是等内容,欢迎下载使用。
沪教版七年级数学第二学期第十四章三角形定向训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,直线l1l2,被直线l3、l4所截,并且l3⊥l4,∠1=46°,则∠2等于( )
A.56° B.34° C.44° D.46°
2、如图,钝角中,为钝角,为边上的高,为的平分线,则与、之间有一种等量关系始终不变,下面有一个规律可以表示这种关系,你发现的是( )
A. B.
C. D.
3、△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若BC=5,则五边形DECHF的周长为( )
A.8 B.10 C.11 D.12
4、如图,在ABC中,AB=AC,D是BC的中点,∠B=35°,则∠BAD=( )
A.110° B.70° C.55° D.35°
5、如图,等边中,D为AC中点,点P、Q分别为AB、AD上的点,,,在BD上有一动点E,则的最小值为( )
A.7 B.8 C.10 D.12
6、如图,点A、B、C、D在一条直线上,点E、F在AD两侧,,,添加下列条件不能判定的是( )
A. B. C. D.
7、下列命题是真命题的是( )
A.等腰三角形的角平分线、中线、高线互相重合
B.一个三角形被截成两个三角形,每个三角形的内角和是90度
C.有两个角是60°的三角形是等边三角形
D.在ABC中,,则ABC为直角三角形
8、如图,△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC交AB于点D,交AC于点E,那么下列结论:①△BDF是等腰三角形;②DE=BD+CE;③若∠A=50°,则∠BFC=115°;④DF=EF.其中正确的有( )
A.1个 B.2个 C.3个 D.4个
9、下列说法错误的是( )
A.任意一个直角三角形都可以被分割成两个等腰三角形
B.任意一个等腰三角形都可以被分割成两个等腰三角形
C.任意一个直角三角形都可以被分割成两个直角三角形
D.任意一个等腰三角形都可以被分割成两个直角三角形
10、已知的三边长分别为a,b,c,则a,b,c的值可能分别是( )
A.1,2,3 B.3,4,7
C.2,3,4 D.4,5,10
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,与的顶点A、B、D在同一直线上,,,,延长分别交、于点F、G.若,,则______.
2、如图,线段AC与BD相交于点O,∠A=∠D=90°,要证明△ABC≌△DCB,还需添加的一个条件是____________.(只需填一个条件即可)
3、如图,在中,BD和CD分别是和的平分线,EF过点D,且,若,,则EF的长为______.
4、如图,上午9时,一艘船从小岛A出发,以12海里的速度向正北方向航行,10时40分到达小岛B处,若从灯塔C处分别测得小岛A、B在南偏东34°、68°方向,则小岛B处到灯塔C的距离是______海里.
5、如图,在中,,交BC的延长线于点E,若,点C是BE中点,则______°.
三、解答题(10小题,每小题5分,共计50分)
1、在ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作ADE,使AD=AE,∠DAE =∠BAC,连接CE.
(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE= 度;
(2)设,.
①如图2,当点在线段BC上移动,则,之间有怎样的数量关系?请说明理由;
②当点在直线BC上(线段BC之外)移动,则,之间有怎样的数量关系?请直接写出你的结论.
2、如图,,,E为BC中点,DE平分.
(1)求证:平分;
(2)求证:;
(3)求证:.
3、如图,灯塔B在灯塔A的正东方向,且.灯塔C在灯塔A的北偏东20°方向,灯塔C在灯塔B的北偏西50°方向.
(1)求的度数;
(2)一轮船从B地出发向北偏西50°方向匀速行驶,5h后到达C地,求轮船的速度.
4、如图,在中,AD平分,于点E.求证:.
5、在等腰中,,点D是BC边上的一个动点(点D不与点B,C重合),连接AD,作等腰,使,,点D,E在直线AC两旁,连接CE.
(1)如图1,当时,直接写出BC与CE的位置关系;
(2)如图2,当时,过点A作于点F,请你在图2中补全图形,用等式表示线段BD,CD,之间的数量关系,并证明.
6、如图1,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连接AC和BD,相交于点E,连接BC.
(1)求证DOB≌AOC;
(2)求∠CEB的大小;
(3)如图2,OAB固定不动,保持△OCD的形状和大小不变,将OCD绕点O旋转(OAB和OCD不能重叠),求∠CEB的大小.
7、如图,在△ABC中,AB=AC,CD⊥AB于点D,∠A=50°,求∠BCD的度数.
8、如图,在等边中,D为BC边上一点,连接AD,将沿AD翻折得到,连接BE并延长交AD的延长线于点F,连接CF.
(1)若,求的度数;
(2)若,求的大小;
(3)猜想CF,BF,AF之间的数量关系,并证明.
9、如图,已知AB=AC,AD=AE,BD和CE相交于点O.求证:OB=OC.
10、已知:如图,点D为BC的中点,,求证:是等腰三角形.
-参考答案-
一、单选题
1、C
【分析】
依据l1∥l2,即可得到∠3=∠1=46°,再根据l3⊥l4,可得∠2=90°﹣46°=44°.
【详解】
解:如图:
∵l1∥l2,∠1=46°,
∴∠3=∠1=46°,
又∵l3⊥l4,
∴∠2=90°﹣46°=44°,
故选:C.
【点睛】
本题考查了平行线性质以及三角形内角和,平行线的性质:两直线平行,同位角相等以及三角形内角和是180°.
2、B
【分析】
根据三角形内角和定理、角平分线的性质、三角形外角的性质依次推理即可得出结论.
【详解】
解:由三角形内角和知∠BAC=180°-∠2-∠1,
∵AE为∠BAC的平分线,
∴∠BAE=∠BAC=(180°-∠2-∠1).
∵AD为BC边上的高,
∴∠ADC=90°=∠DAB+∠ABD.
又∵∠ABD=180°-∠2,
∴∠DAB=90°-(180°-∠2)=∠2-90°,
∴∠EAD=∠DAB+∠BAE=∠2-90°+(180°-∠2-∠1)=(∠2-∠1).
故选:B
【点睛】
本题主要考查了三角形的内角和定理,角平分线的定义、三角形外角性质及三角形的高的定义,解答的关键是找到已知角和所求角之间的联系.
3、B
【分析】
证明△AFH≌△CHG(AAS),得出AF=CH.由题意可知BE=FH,则得出五边形DECHF的周长=AB+BC,则可得出答案.
【详解】
解:∵△GFH为等边三角形,
∴FH=GH,∠FHG=60°,
∴∠AHF+∠GHC=120°,
∵△ABC为等边三角形,
∴AB=BC=AC=5,∠ACB=∠A=60°,
∵∠AHF=180°-∠FHG-∠GHC =120°-∠GHC,
∠HGC=180°-∠C-∠GHC =120°-∠GHC,
∴∠AHF=∠HGC,
在△AFH和△CHG中
,
∴△AFH≌△CHG(AAS),
∴AF=CH.
∵△BDE和△FGH是两个全等的等边三角形,
∴BE=FH,
∴五边形DECHF的周长=DE+CE+CH+FH+DF=BD+CE+AF+BE+DF,
=(BD+DF+AF)+(CE+BE),
=AB+BC=10.
故选:B.
【点睛】
本题考查了全等三角形的判定与性质,等边三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.
4、C
【分析】
根据等腰三角形三线合一的性质可得AD⊥BC,然后利用直角三角形两锐角互余的性质解答.
【详解】
解:∵AB=AC,D是BC的中点,
∴AD⊥BC,
∵∠B=35°,
∴∠BAD=90°−35°=55°.
故选:C.
【点睛】
本题主要考查了等腰三角形三线合一的性质,直角三角形两锐角互余的性质,是基础题,熟记性质是解题的关键.
5、C
【分析】
作点关于的对称点,连接交于,连接,此时的值最小,最小值,据此求解即可.
【详解】
解:如图,
是等边三角形,
,
∵D为AC中点,
∴,,,
,
作点关于的对称点,连接交于,连接,此时的值最小.最小值,
,,
,
,
,
,
是等边三角形,
,
的最小值为.
故选:C.
【点睛】
本题考查等边三角形的性质和判定,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.
6、A
【分析】
根据题意,可得,结合选项根据三角形全等的性质与判定逐项分析即可.
【详解】
解:
A. ,,不能根据SSA证明三角形全等,故该选项符合题意;
B.
,
故能判定,不符合题意;
C. ,,
,故能判定,不符合题意;
D.
,故能判定,不符合题意;
故选A
【点睛】
本题考查了平行线的性质,三角形全等的性质与判定,掌握三角形全等的性质与判定是解题的关键.
7、C
【分析】
分别根据等腰三角形的性质、三角形的内角和定理、等边三角形的判定,直角三角形的判定即可判断.
【详解】
A.等腰三角形中顶角角平分线、底边上的中线和底边上的高线互相重合,即三线合一,故此选项错误;
B.三角形的内角和为180°,故此选项错误;
C.有两个角是60°,则第三个角为,所以三角形是等边三角形,故此选项正确;
D.设,则,故,解得,所以,,此三角形不是直角三角形,故此选项错误.
故选:C.
【点睛】
本题考查等腰三角形的性质,直角三角形的定义以及三角形内角和,掌握相关概念是解题的关键.
8、C
【分析】
根据平行线的性质和角平分线的定义以及等腰三角形的判定和性质逐个判定即可解答.
【详解】
解:∵BF是∠AB的角平分线,
∴∠DBF=∠CBF,
∵DE∥BC,
∴∠DFB=∠CBF,
∴∠DBF=∠DFB,
∴BD=DF,
∴△BDF是等腰三角形;故①正确;
同理,EF=CE,
∴DE=DF+EF=BD+CE,故②正确;
∵∠A=50°,
∴∠ABC+∠ACB=130°,
∵BF平分∠ABC,CF平分∠ACB,
∴,
∴∠FBC+∠FCB=(∠ABC+∠ACB)=65°,
∴∠BFC=180°﹣65°=115°,故③正确;
当△ABC为等腰三角形时,DF=EF,
但△ABC不一定是等腰三角形,
∴DF不一定等于EF,故④错误.
故选:C.
【点睛】
本题主要考查等腰三角形的性质、角平分线的定义及平行线的性质等知识点,根据两直线平行、内错角相等以及等角对等边来判定等腰三角形是解答本题的关键.
9、B
【分析】
根据等腰三角形和直角三角形的性质判断各选项即可得出答案.
【详解】
解:、任意一个直角三角形一定能分成两个等腰三角形,本选项正确,不符合题意;
、任意一个等腰三角形不一定能分成两个等腰三角形,本选项错误,符合题意;
、任意一个直角三角形都可以被分割成两个直角三角形,本选项正确,不符合题意;
、任意一个等腰三角形都可以被分割成两个直角三角形,本选项正确,不符合题意;
故选:B.
【点睛】
本题考查了等腰三角形和直角三角形的知识,解题的关键是能判断等腰三角形及直角三角形,可动手操作进行判断.
10、C
【分析】
三角形的三边应满足两边之和大于第三边,两边之差小于第三边,据此求解.
【详解】
解:A、1+2=3,不能组成三角形,不符合题意;
B、3+4=7,不能组成三角形,不符合题意;
C、2+3>4,能组成三角形,符合题意;
D、4+5<10,不能组成三角形,不符合题意;
故选:C.
【点睛】
本题考查了三角形的三边关系,满足两条较小边的和大于最大边即可.
二、填空题
1、
【分析】
先证明△ABC≌△EDB,可得∠E=,然后利用三角形外角的性质求解.
【详解】
解:∵,
∴∠ABC=∠D,
在△ABC和△EDB中
,
∴△ABC≌△EDB,
∴∠E=,
∴,,
∴∠EGF=30°+50°=80°,
∴80°+30°=110°,
故答案为:110°.
【点睛】
本题考查了平行线的性质,全等三角形的判定与性质,以及三角形外角的性质,熟练掌握三角形的外角等于不相邻的两个内角和是解答本题的关键.
2、答案不唯一,如:AC=DB,AB=DC,∠ABC=∠DCB
【分析】
根据全等三角形的判定条件求解即可.
【详解】
解:∵∠A=∠D=90°,BC=CB,
∴只需要添加:AC=DB或AB=DC,即可利用HL证明△ABC≌△DCB;添加∠ABC=∠DCB可以利用AAS证明△ABC≌△DCB,
故答案为:答案不唯一,如:AC=DB,AB=DC,∠ABC=∠DCB.
【点睛】
本题主要考查了全等三角形的判定,熟知全等三角形的判定条件是解题的关键.
3、7
【分析】
根据角平分线的定义和平行线的性质证明∠EBD=∠EDB,∠FDC=∠FCD,得到BE=DE,CF=DF,即可求解.
【详解】
解:∵EF∥BC,
∴∠EDB=∠DBC,∠FDC=∠DCB,
又∵BD和CD分别是∠ABC和∠ACB的平分线,
∴∠EBD=∠DBC,∠FCD=∠DCB,
∴∠EBD=∠EDB,∠FDC=∠FCD,
∴BE=DE,CF=DF,
又∵BE=3,CF=4,
∴EF=DE+DF=BE+CF=7.
故答案为:7.
【点睛】
本题主要考查了平行线的性质,角平分的定义,等腰三角形的性质与判定,熟知相关知识是解题的关键.
4、20
【分析】
根据题干所给的角的度数,易证是等腰三角形,而AB的长易求,即可根据等腰三角形的性质,得出BC的值.
【详解】
解:据题意得,.
∵,即,
∴,
∴.
由题意可知这艘船行驶的时间为(小时).
∴(海里),
∴(海里).
故答案为:20.
【点睛】
本题考查了三角形外角的性质,等腰三角形的判定和性质,方向角的问题,解题的关键是由已知得到三角形是等腰三角形,要学会把实际问题转化为数学问题,再用数学知识解决实际问题.
5、67.5°
【分析】
连接AE,先得出∠BAC=∠BAE,再根据,得出∠BAC=22.5°,最后得出结果.
【详解】
解:连接AE,
∵点C是BE中点,
∴BC=CE,
∵∠ACB=90°,
∴AC⊥BE,
∴AB=AE,
∴∠BAC=∠BAE,
∵DE⊥AB,
∴∠ADE=90°,
∵,
∴∠AED=∠DAE=45°,
∴∠BAC=∠BAE=22.5°,
∴∠B=90°-∠BAC=67.5°.
故答案为:67.5°.
【点睛】
本题考查了线段垂直平分线的性质,等腰三角形的性质及直角三角形的性质,正确作出辅助线是解题的关键.
三、解答题
1、(1)90;(2),见解析;②或
【分析】
(1)由等腰直角三角形的性质可得∠ABC=∠ACB=45°,由“SAS”可证△BAD≌△CAE,可得∠ABC=∠ACE=45°,可求∠BCE的度数;
(2)①由“SAS”可证△ABD≌△ACE得出∠ABD=∠ACE,再用三角形的内角和即可得出结论;②分两种情况,由“SAS”可证△ABD≌△ACE得出∠ABD=∠ACE,再用三角形的内角和即可得出结论.
【详解】
解:(1)∵,
∴,
∵AB=AC,AD=AE,
∴,,
∵,
∴,
在和中
∴,
∴
(2)或.
理由:①∵,
∴.
即.
在和中
,
∴.
∴.
∴.
∴.
∵,
∴.
②如图:
∵,
∴.
即.
在和中
,
∴.
∴.
∵,,
,
.
综上所述:点D在直线BC上移动,α+β=180°或α=β.
【点睛】
本题主要考查全等三角形的判定及性质,等腰三角形的性质和三角形内角和定理,掌握全等三角形的判定方法及性质是关键.
2、(1)见解析;(2)见解析;(3)见解析
【分析】
(1)延长DE交AB延长线于F,由∠B=∠C=90°,推出AB∥CD,则∠CDE=∠F,再由DE平分∠ADC,即可推出∠ADF=∠F,得到AD=AF,即△ADF是等腰三角形,然后证明△CDE≌△BFE得到DE=FE,即E是DF的中点,即可证明AE平分∠BAD;
(2)由(1)即可用三线合一定理证明;
(3)由△CDE≌△BFE,得到CD=BF,则AD=AF=AB+BF=AB+CD.
【详解】
解:(1)如图所示,延长DE交AB延长线于F,
∵∠B=∠C=90°,
∴AB∥CD,
∴∠CDE=∠F,
∵DE平分∠ADC,
∴∠CDE=∠ADE,
∴∠ADF=∠F,
∴AD=AF,
∴△ADF是等腰三角形,
∵E是BC的中点,
∴CE=BE,
∴△CDE≌△BFE(AAS),
∴DE=FE,
∴E是DF的中点,
∴AE平分∠BAD;
(2)由(1)得△ADF是等腰三角形,AD=AF,E是DF的中点,
∴AE⊥DE;
(3)∵△CDE≌△BFE,
∴CD=BF,
∴AD=AF=AB+BF=AB+CD.
【点睛】
本题主要考查了平行线的性质与判定,全等三角形的性质与判定,等腰三角形的性质与判定,熟知相关知识是解题的关键.
3、(1)70°;(2)15km/h
【分析】
(1)根据题意得∠BAC=70°,∠ABC=40°,根据三角形的内角和定理即可求得∠ACB;
(2)根据等腰三角形的判定可得BC=AB=75km,进而由速度=路程÷时间求解即可.
【详解】
解:(1)根据题意得∠BAC=70°,∠ABC=40°,
∴∠ACB=180°-∠BAC-∠ABC=180°-70°-40°=70°;
(2)∵∠BAC=∠ACB=70°,
∴BC=AB=75km,
∴轮船的速度为75÷5=15(km/h).
【点睛】
本题考查方位角、等腰三角形的判定、三角形的内角和定理,理解方位角,熟练掌握等腰三角形的等角对等边是解答的关键.
4、证明见解析.
【分析】
延长CE交AB于F,求出∠AEC=∠AEF,∠FAE=∠CAE,根据ASA证△FAE≌△CAE,推出∠ACE=∠AFC,根据三角形外角性质得出∠AFC=∠B+∠ECD,代入即可.
【详解】
证明:延长CE交AB于F,
∵CE⊥AD,
∴∠AEC=∠AEF,
∵AD平分∠BAC,
∴∠FAE=∠CAE,
在△FAE和△CAE中,
∵ ,
∴△FAE≌△CAE(ASA),
∴∠ACE=∠AFC,
∵∠AFC=∠B+∠ECD,
∴∠ACE=∠B+∠ECD.
【点睛】
本题考查了全等三角形的性质和判定,三角形的外角性质等知识点,关键是作辅助线后求出∠AFC=∠ACE.
5、
(1)
(2)或,见解析
【分析】
(1)根据已知条件求出∠B=∠ACB=45°,证明△BAD≌△CAE,得到∠ACE=∠B=45°,求出∠BCE=∠ACB+∠ACE=90°,即可得到结论;
(2)根据题意作图即可,证明≌.得到,,,推出.延长EF到点G,使,证明≌,推出.由此得到.同理可证.
(1)
解:,,
∴∠B=∠ACB=45°,
∵,
∴,即∠BAD=∠CAE,
∵,,
∴△BAD≌△CAE,
∴∠ACE=∠B=45°,
∴∠BCE=∠ACB+∠ACE=90°,
∴;
(2)
解:如图,补全图形;
.
证明:∵,
∴.
又∵,,
∴≌.
∴,,.
∵,
∴.
∴.
延长EF到点G,使.
∵,
∴.
∴.
∵,
∴.
∴.
∵,
∴≌.
∴.
∵,
∴.
如图,同理可证.
.
【点睛】
此题考查了全等三角形的判定及性质,等腰三角形的性质,熟记全等三角形的判定及性质是解题的关键.掌握分类思想解题是难点.
6、(1)见详解;(2)120°;(2)120°.
【分析】
(1)如图1,根据等边三角形的性质得到OD=OC=OA=OB,∠COD=∠AOB=60°,则利用根据“SAS”判断△AOC≌△BOD;
(2)利用△AOC≌△BOD得到∠CAO=∠DBO,然后根据三角形内角和可得到∠AEB=∠AOB=60°,即可求出答案;
(3)如图2,与(1)的方法一样可证明△AOC≌△BOD;则∠CAO=∠DBO,然后根据三角形内角和可求出∠AEB=∠AOB=60°,即可得到答案.
【详解】
(1)证明:如图1,
∵△ODC和△OAB都是等边三角形,
∴OD=OC=OA=OB,∠COD=∠AOB=60°,
∴∠BOD=∠AOC=120°,
在△AOC和△BOD中
∴△AOC≌△BOD;
(2)解:∵△AOC≌△BOD,
∴∠CAO=∠DBO,
∵∠1=∠2,
∴∠AEB=∠AOB=60°,
∴;
(3)解:如图2,
∵△ODC和△OAB都是等边三角形,
∴OD=OC=OA=OB,∠COD=∠AOB=60°,
∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,
在△AOC和△BOD中
∴△AOC≌△BOD;
∴∠CAO=∠DBO,
∵∠1=∠2,
∴∠AEB=∠AOB=60°,
∴;
即∠CEB的大小不变.
【点睛】
本题考查了几何变换综合题:熟练掌握旋转的性质、等边三角形的性质和全等三角形的判定与性质;利用类比的方法解决(3)小题.
7、25°
【分析】
直接利用等腰三角形的性质得出∠ABC=∠ACB=65°,进而利用三角形内角和定理得出答案.
【详解】
∵AB=AC,∠A=50°,
∴∠ABC=∠ACB=65°,
∵CD⊥BC于点D,
∴∠BCD的度数为:180°−90°−65°=25°.
【点睛】
此题主要考查了等腰三角形的性质,正确得出∠B的度数是解题关键.
8、(1)20°;(2);(3)AF= CF+BF,理由见解析
【分析】
(1)由△ABC是等边三角形,得到AB=AC,∠BAC=∠ABC=60°,由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE,则∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE,,∠CBF=∠ABE-∠ABC=20°;
(2)同(1)求解即可;
(3)如图所示,将△ABF绕点A逆时针旋转60°得到△ACG,先证明△AEF≌△ACF得到∠AFE=∠AFC,然后证明∠AFE=∠AFC=60°,得到∠BFC=120°,即可证明F、C、G三点共线,得到△AFG是等边三角形,则AF=GF=CF+CG=CF+BF.
【详解】
解:(1)∵△ABC是等边三角形,
∴AB=AC,∠BAC=∠ABC=60°,
由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE,
∴∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE,
∴,
∴∠CBF=∠ABE-∠ABC=20°;
(2)∵△ABC是等边三角形,
∴AB=AC,∠BAC=∠ABC=60°,
由折叠的性质可知,,AC=AE,
∴ ,AB=AE,
∴,
∴;
(3)AF= CF+BF,理由如下:
如图所示,将△ABF绕点A逆时针旋转60°得到△ACG,
∴AF=AG,∠FAG=60°,∠ACG=∠ABF,BF=CG
在△AEF和△ACF中,
,
∴△AEF≌△ACF(SAS),
∴∠AFE=∠AFC,
∵∠CBF+∠BCF+∠BFD+∠CFD=180°,∠CAF+∠CFA+∠ACD+∠CFD=180°,
∴∠BFD=∠ACD=60°,
∴∠AFE=∠AFC=60°,
∴∠BFC=120°,
∴∠BAC+∠BFC=180°,
∴∠ABF+∠ACF=180°,
∴∠ACG+∠ACF=180°,
∴F、C、G三点共线,
∴△AFG是等边三角形,
∴AF=GF=CF+CG=CF+BF.
【点睛】
本题主要考查了等边三角形的性质与判定,旋转的性质,折叠的性质,全等三角形的性质与判定,三角形内角和定理,熟知相关知识是解题的关键.
9、见解析
【分析】
根据SAS证明△AEC与△ADB全等,进而利用全等三角形的性质解答即可.
【详解】
证明:在△AEC与△ADB中,
,
∴△AEC≌△ADB(SAS),
∴∠ACE=∠ABD,
∵AB=AC,
∴∠ABC=∠ACB,
∴∠OBC=∠OCB,
∴OB=OC.
【点睛】
本题考查了全等三角形的判定和性质,等腰三角形的性质,证明△AEC≌△ADB是本题的关键.
10、证明见解析
【分析】
过点D作,交AB于点M,过点D做,交AC于点N,根据角平分线性质,得;根据全等三角形的性质,通过证明,通过证明,得,结合等腰三角形的性质,即可完成证明.
【详解】
如下图,过点D作,交AB于点M,过点D做,交AC于点N
∵
∴
直角和直角中
∴
∴
∵点D为BC的中点,
∴
直角和直角中
∴
∴
∵,
∴,即是等腰三角形.
【点睛】
本题考查了角平分线、三角形中线、全等三角形、等腰三角形的知识;解题的关键是熟练掌握角平分线、三角形中线,全等三角形的性质,从而完成求解.
相关试卷
这是一份沪教版 (五四制)七年级下册第十四章 三角形综合与测试综合训练题,共27页。试卷主要包含了如图,点D,如图,在中,等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试巩固练习,共31页。试卷主要包含了如图,点A等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十四章 三角形综合与测试一课一练,共34页。