![2022年必考点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线专题测试试题(含答案解析)第1页](http://img-preview.51jiaoxi.com/2/3/12707980/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年必考点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线专题测试试题(含答案解析)第2页](http://img-preview.51jiaoxi.com/2/3/12707980/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年必考点解析沪教版(上海)七年级数学第二学期第十三章相交线 平行线专题测试试题(含答案解析)第3页](http://img-preview.51jiaoxi.com/2/3/12707980/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试一课一练
展开
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试一课一练,共30页。试卷主要包含了如图,,交于点,,,则的度数是,下列说法中正确的有等内容,欢迎下载使用。
七年级数学第二学期第十三章相交线 平行线专题测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,直线,相交于点,,,平分,给出下列结论:①当时,;②为的平分线;③若时,;④.其中正确的结论有( )
A.4个 B.3个 C.2个 D.1个
2、如所示各图中,∠1与∠2是对顶角的是( )
A. B. C. D.
3、如果同一平面内有三条直线,那么它们交点个数是( )个.
A.3个 B.1或3个 C.1或2或3个 D.0或1或2或3个
4、如图,,交于点,,,则的度数是( )
A.34° B.66° C.56° D.46°
5、如图,平行线AB,CD被直线AE所截.若∠1=70°,则∠2的度数为( )
A.80° B.90° C.100° D.110°
6、一把直尺与一块直角三角板按如图方式摆放,若∠1=28°,则∠2=( )
A.62° B.58° C.52° D.48°
7、下列说法中正确的有( )
①一条直线的平行线只有一条.
②过一点与已知直线平行的直线只有一条.
③因为a∥b,c∥d,所以a∥d.
④经过直线外一点有且只有一条直线与已知直线平行.
A.1个 B.2个 C.3个 D.4个
8、如图所示,AB∥CD,若∠2是∠1的2倍,则∠2等于( )
A.60° B.90° C.120° D.150°
9、一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠A=60°,则∠DBC的度数为( )
A.45° B.25° C.15° D.20°
10、如图,把长方形沿EF对折,若,则的度数为( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,过直线AB上一点O作射线OC,∠BOC=29°38′,OD平分∠AOC,则∠DOC的度数为 _____.
2、如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=36°,则∠BOD的大小为 _____.
3、将含30°角的三角板如图摆放,ABCD,若=20°,则的度数是______.
4、如图,将一副三角板按如图所示的方式摆放,AC∥DF,BC与EF相交于点G,则∠CGF度数为 _____度.
5、如图,
(1)∠1和∠ABC是直线AB、CE被直线________所截得的________角;
(2)∠2和∠BAC是直线CE、AB被直线________所截得的________角;
(3)∠3和∠ABC是直线________、________被直线________所截得的________角;
(4)∠ABC和∠ACD是直线________、________被直线_________所截得的________角;
(5)∠ABC和∠BCE是直线________、________被直线________所截得的________角.
三、解答题(10小题,每小题5分,共计50分)
1、如图所示,从标有数字的角中找出:
(1)直线CD和AB被直线AC所截构成的内错角.
(2)直线CD和AC被直线AD所截构成的同位角.
(3)直线AC和AB被直线BC所截构成的同旁内角.
2、填空,完成下列说理过程:如图,直线EF和CD相交于点O,∠AOB=90°,OC平分∠AOF,∠AOE=40°.求∠BOD的度数.
解:∵∠AOE=40°(已知)
∴∠AOF=180°﹣ (邻补角定义)
=180°﹣ °
= °
∵OC平分∠AOF(已知)
∴∠AOC∠AOF( )
∵∠AOB=90°(已知)
∴∠BOD=180°﹣∠AOB﹣∠AOC( )
=180°﹣90°﹣ °
= °
3、如图,,P为,之间的一点,已知,,求∠1的度数.
4、如图,长方形纸片ABCD,点E,F,C分别在边AD,AB,CD上.将∠AEF沿折痕EF翻折,点A落在点A'处;将∠DEG沿折痕EG翻折,点D落在点D'处.
(1)如图1,若∠AEF=40°,∠DEG=35°,求∠A'ED'的度数;
(2)如图1,若∠A'ED'=α,求∠FEG的度数(用含α的式子表示);
(3)如图2,若∠A'ED'=α,求∠FEG的度数(用含α的式子表示).
5、已知:如图,直线,直线MN交EF,PO于点A,B,直线HQ交EF,PO于点D,C,DG与OP交于点G,若,,.
(1)求证:;
(2)请直接写出的度数.
6、如图,∠AGB=∠EHF,∠C=∠D.
(1)求证:BD∥CE;
(2)求证:∠A=∠F.
7、如图,己知AB∥DC,AC⊥BC,AC平分∠DAB,∠B=50°,求∠D的大小.
阅读下面的解答过程,并填括号里的空白(理由或数学式).
解:∵AB∥DC( ),
∴∠B+∠DCB=180°( ).
∵∠B=( )(已知),
∴∠DCB=180°﹣∠B=180°﹣50°=130°.
∵AC⊥BC(已知),
∴∠ACB=( )(垂直的定义).
∴∠2=( ).
∵AB∥DC(已知),
∴∠1=( )( ).
∵AC平分∠DAB(已知),
∴∠DAB=2∠1=( )(角平分线的定义).
∵AB∥DC(己知),
∴( )+∠DAB=180°(两条直线平行,同旁内角互补).
∴∠D=180°﹣∠DAB= .
8、如图,已知BC,DE相交于点O,给出以下三个判断:①ABDE;②BCEF;③∠B=∠E.请你以其中两个判断作为条件,另外一个判断作为结论,写出所有的命题,指出这些命题是真命题还是假命题,并选择其中的一个真命题加以证明.
9、如图,直线AB与CD相交于点O,OC平分∠BOE,OF⊥CD,垂足为点O.
(1)写出∠AOF的一个余角和一个补角.
(2)若∠BOE=60°,求∠AOD的度数.
(3)∠AOF与∠EOF相等吗?说明理由.
10、完成下面的证明:
已知:如图,∠1=30°,∠B=60°,AB⊥AC.求证:AD∥BC.
证明:∵AB⊥AC(已知)
∴∠ =90°( )
∵∠1=30°,∠B=60°(已知)
∴∠1+∠BAC+∠B= ( )
即∠ +∠B=180°
∴AD∥BC( )
-参考答案-
一、单选题
1、B
【分析】
由邻补角,角平分线的定义,余角的性质进行依次判断即可.
【详解】
解:∵∠AOE=90°,∠DOF=90°,
∴∠BOE=90°=∠AOE=∠DOF,
∴∠AOF+∠EOF=90°,∠EOF+∠EOD=90°,∠EOD+∠BOD=90°,
∴∠EOF=∠BOD,∠AOF=∠DOE,
∴当∠AOF=50°时,∠DOE=50°;
故①正确;
∵OB平分∠DOG,
∴∠BOD=∠BOG,
∴∠BOD=∠BOG=∠EOF=∠AOC,
故④正确;
∵,
∴∠BOD=180°-150°=30°,
∴
故③正确;
若为的平分线,则∠DOE=∠DOG,
∴∠BOG+∠BOD=90°-∠EOE,
∴∠EOF=30°,而无法确定,
∴无法说明②的正确性;
故选:B.
【点睛】
本题考查了邻补角,角平分线的定义,余角的性质,数形结合是解决本题的关键.
2、B
【分析】
根据对顶角的定义进行判断:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角.
【详解】
解:A.∠1与∠2没有公共顶点,不是对顶角;
B.∠1与∠2有公共顶点,并且两边互为反向延长线,是对顶角;
C.∠1与∠2虽然有公共顶点,但两个角的两边不互为反向延长线,不是对顶角;
D.∠1与∠2虽然有公共顶点,但两个角的两边不互为反向延长线,不是对顶角.
故选:B.
【点睛】
本题主要考查了对顶角的定义,熟记对顶角的定义是解题的关键.
3、D
【分析】
根据三条直线是否有平行线分类讨论即可.
【详解】
解:当三条直线平行时,交点个数为0;
当三条直线相交于1点时,交点个数为1;
当三条直线中,有两条平行,另一条分别与他们相交时,交点个数为2;
当三条直线互相不平行时,且交点不重合时,交点个数为3;
所以,它们的交点个数有4种情形.
故选:D.
【点睛】
本题考查多条直线交点问题,解题关键是根据三条直线中是否有平行线和是否交于一点进行分类讨论.
4、C
【分析】
由余角的定义得出的度数,由两直线平行内错角相等即可得出结论.
【详解】
解:∵,,
∴,
∵,
∴,
故选:C
【点睛】
本题考查了平行线的性质和余角,解题的关键是灵活运用所学知识解决问题.
5、D
【分析】
直接利用对顶角以及平行线的性质分析得出答案.
【详解】
解:
∵∠1=70°,
∴∠1=∠3=70°,
∵ABDC,
∴∠2+∠3=180°,
∴∠2=180°−70°=110°.
故答案为:D.
【点睛】
此题主要考查了平行线的性质以及对顶角,正确掌握平行线的性质是解题关键.
6、A
【分析】
过三角板的直角顶点作直尺两边的平行线,根据平行线的性质(两直线平行,同位角相等)即可求解.
【详解】
解:如图,过三角板的直角顶点作直尺两边的平行线,
∵直尺的两边互相平行,
∴,
∴,
∴,
故选:A.
【点睛】
本题考查平行线的性质,掌握平行线的性质是解题的关键.
7、A
【分析】
根据平行线的性质,平行线的判定判断即可.
【详解】
∵一条直线的平行线有无数条,
∴①的说法不正确;
∵经过直线外一点有且只有一条直线与已知直线平行,
∴②的说法不正确,④的说法正确;
∵a∥b,c∥d,无法判定a∥d
∴③的说法不正确.
只有一个是正确的,
故选A.
【点睛】
本题考查了平行线的性质,平行线的判定,熟练掌握性质,灵活运用平行线的判定定理是解题的关键.
8、C
【分析】
先由AB∥CD,得到∠1=∠CEF,根据∠2+∠CEF=180°,得到∠2+∠1=180°,再由∠2=2∠1,则3∠1=180°,由此求解即可.
【详解】
解:∵AB∥CD,
∴∠1=∠CEF,
又∵∠2+∠CEF=180°,
∴∠2+∠1=180°,
∵∠2=2∠1,
∴3∠1=180°,
∴∠1=60°,
∴∠2=120°,
故选C.
【点睛】
本题主要考查了平行线的性质,领补角互补,解题的关键在于能够熟练掌握平行线的性质.
9、C
【分析】
直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.
【详解】
解:由题意可得:∠EDF=45°,∠ABC=30°,
∵AB∥CF,
∴∠ABD=∠EDF=45°,
∴∠DBC=45°-30°=15°.
故选:C.
【点睛】
此题主要考查了平行线的性质,根据题意得出∠ABD的度数是解题关键.
10、B
【分析】
根据折叠的性质及∠1=50°可求出∠BFE的度数,再由平行线的性质即可得到∠AEF的度数.
【详解】
解:根据折叠以及∠1=50°,得
∠BFE=∠BFG=(180°﹣∠1)=65°.
∵AD∥BC,
∴∠AEF=180°﹣∠BFE=115°.
故选:B.
【点睛】
本题考查的是平行线的性质及图形翻折变换的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
二、填空题
1、
【分析】
先根据邻补角互补求出∠AOC=150°22′,再由角平分线的定义求解即可.
【详解】
解:∵∠BOC=29°38′,∠AOC+∠BOC=180°,
∴∠AOC=150°22′,
∵OD平分∠AOC,
∴,
故答案为:.
【点睛】
本题主要考查了邻补角互补,角度制的计算,角平分线的定义,熟知相关知识是解题的关键.
2、18°度
【分析】
根据直角的定义可得∠COE=90°,然后求出∠EOF,再根据角平分线的定义求出∠AOF,然后根据∠AOC=∠AOF﹣∠COF求出∠AOC,再根据对顶角相等解答.
【详解】
解:∵∠COE是直角,
∴∠COE=90°,
∵∠COF=36°,
∴∠EOF=∠COE﹣∠COF=90°﹣36°=54°,
∵OF平分∠AOE,
∴∠AOF=∠EOF=54°,
∴∠AOC=∠AOF﹣∠COF=54°﹣36°=18°,
∴∠BOD=∠AOC=18°.
故答案为:18°.
【点睛】
本题考查了对顶角相等的性质,角平分线的定义,是基础题,熟记概念与性质并准确识图,理清图中各角度之间的关系是解题的关键.
3、50°
【分析】
三角形的外角等于不相邻的两个内角和,同位角相等可得出,从而得到的值.
【详解】
解:如图
故答案为:.
【点睛】
本题考察了三角形的外角,平行线的性质.解题的关键在于角度之间的转化和等量关系.
4、30
【分析】
先证明再证明再利用平行线的性质与对顶角的性质可得答案.
【详解】
解:如图,记交于点
由题意得:
故答案为:
【点睛】
本题考查的是平行线的判定与性质,掌握“两直线平行,同位角相等与同旁内角互补,两直线平行”是解本题的关键.
5、BD(BC) 同位 AC 内错 AB AC BC 同旁内 AB AC BC 同位 AB CE BC 同旁内
【分析】
根据同位角、内错角、同旁内角的性质判断即可;
【详解】
(1)∠1和∠ABC是直线AB、CE被直线BD(BC)所截得的同位角;
(2)∠2和∠BAC是直线CE、AB被直线AC所截得的内错角;
(3)∠3和∠ABC是直线AB、AC被直线BC所截得的同旁内角;
(4)∠ABC和∠ACD是直线AB、AC被直线BC所截得的同位角;
(5)∠ABC和∠BCE是直线AB、CE被直线BC所截得的同旁内角.
故答案是:BD(BC);同位;AC;内错;AB;AC;BC;同旁内;AB;AC;BC;同位;AB;CE;BC;同旁内.
【点睛】
本题主要考查了同位角、内错角、同旁内角的判断,准确分析判断是解题的关键.
三、解答题
1、 (1)直线CD和AB被直线AC所截构成的内错角是∠2和∠5; (2)直线CD和AC被直线AD所截构成的同位角是∠1和∠7;(3)直线AC和AB被直线BC所截构成的同旁内角是∠3和∠4
【分析】
根据两条直线被第三条直线所截,所形成的角中,两角在两条直线的中间,第三条直线的两旁,可得内错角,两角在两直线的中间,第三条直线的同侧,可得同旁内角,两角在两条直线的同侧,第三条直线的同侧,可得同位角.
【详解】
解:(1)直线CD和AB被直线AC所截构成的内错角是∠2和∠5.
(2)直线CD和AC被直线AD所截构成的同位角是∠1和∠7.
(3)直线AC和AB被直线BC所截构成的同旁内角是∠3和∠4.
【点睛】
此题主要考查了三线八角,关键是掌握同位角的边构成F形,内错角的边构成Z形,同旁内角的边构成U形.
2、角平分线的定义,平角的定义,
【分析】
先利用邻补角的含义求解 再利用角平分线的含义证明:∠AOC∠AOF,再利用平角的定义结合角的和差关系可得答案.
【详解】
解:∵∠AOE=40°(已知)
∴∠AOF=180°﹣(邻补角定义)
=180°﹣40°
=140°
∵OC平分∠AOF(已知)
∴∠AOC∠AOF(角平分线的定义)
∵∠AOB=90°(已知)
∴∠BOD=180°﹣∠AOB﹣∠AOC(平角的定义)
=180°﹣90°﹣70°
=20°
故答案为:角平分线的定义,平角的定义,
【点睛】
本题考查的是平角的定义,邻补角的含义,角平分线的定义,角的和差运算,掌握“几何图形中角的和差关系”是解本题的关键.
3、30°
【分析】
首先过点P作射线,根据两直线平行,内错角相等,即可求得答案.
【详解】
过点P作射线,如图①.
∵,,
∴.
∴.
∵,∴.
又∵.
∴.
【点睛】
此题考查了平行线的判定与性质.平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.
4、(1);(2);(3)
【分析】
(1)由折叠的性质,得到,,然后由邻补角的定义,即可求出答案;
(2)由折叠的性质,先求出,然后求出∠FEG的度数即可;
(3)由折叠的性质,先求出,然后求出∠FEG的度数即可.
【详解】
解:(1)将∠AEF沿折痕EF翻折,点A落在点A'处;将∠DEG沿折痕EG翻折,点D落在点D'处,
∴,,
∴;
(2)根据题意,则
,,
∵,
∴,
∴,
∴;
(3)根据题意,
,,
∵,
∴,
∴,
∴;
【点睛】
本题考查了折叠的性质,邻补角的定义,解题的关键是熟练掌握折叠的性质,正确得到,.
5、(1)见解析;(2)
【分析】
(1)根据可得,,再根据内错角相等两直线平行即可得证;
(2)根据两直线平行的性质可得,从而可得,再由即可求解.
【详解】
解:(1)∵,
∴,
∵,
∴,
∴;
(2)∵,,
∴,
,
∵,
∴,
∴.
【点睛】
本题考查了平行线的判定及性质,解题的关键是掌握平行线的判定及性质,利用数形结合的思想进行求解.
6、(1)证明见解析;(2)证明见解析.
【分析】
(1)由∠AGB=∠1,∠AGB=∠EHF,可得∠1=∠EHF,则BD∥CE;
(2)由BD∥CE,可得∠D=∠2,则∠2=∠C,推出AC∥DF,则∠A=∠F.
【详解】
证明:(1)∵∠AGB=∠1,∠AGB=∠EHF,
∴∠1=∠EHF,
∴BD∥CE;
(2)∵BD∥CE,
∴∠D=∠2,
∵∠D=∠C,
∴∠2=∠C,
∴AC∥DF,
∴∠A=∠F.
【点睛】
本题主要考查了平行线的性质与判定,对顶角相等,熟练掌握平行线的性质与判定条件是解题的关键.
7、见解析.
【分析】
先根据平行线的性质可得,从而可得,再根据垂直的定义可得,从而可得,然后根据平行线的性质可得,根据角平分线的定义可得,最后根据平行线的性质即可得.
【详解】
解:∵(已知),
∴(两直线平行,同旁内角互补).
∵(已知),
∴.
∵(已知),
∴(垂直的定义).
∴.
∵(已知),
∴(两直线平行,内错角相等).
∵平分(已知),
∴(角平分线的定义).
∵(己知),
∴(两条直线平行,同旁内角互补).
∴.
【点睛】
本题考查了平行线的性质、垂直的定义、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.
8、ABDE,BCEF,则∠B=∠E,此命题为真命题,见解析.
【分析】
三个判断任意两个为条件,另一个为结论可写三个命题,然后根据平行线的判定与性质判断这些命题的真假.
【详解】
(1)若AB∥DE,BC∥EF,则∠B=∠E,此命题为真命题.
(2)若AB∥DE,∠B=∠E,则BC∥EF,此命题为真命题.
(3)若∠B=∠E,BC∥EF,则AB∥DE,此命题为真命题.
以第一个命题为例证明如下:
∵AB∥DE,
∴∠B=∠DOC.
∵BC∥EF,
∴∠DOC=∠E,
∴∠B=∠E.
【点睛】
本题主要是考查了平行线的判定和性质,熟练掌握平行线的判定和性质求解该类题目的关键.
9、(1)∠AOF的余角是:∠COE或∠BOC或∠AOD;∠AOF的补角是∠BOF;(2)30°;(3)∠AOF=∠EOF,理由见解析
【分析】
(1)由OC⊥CD,可得∠DOF=90°,则∠AOF+∠AOD=90°,由对顶角相等得∠BOC=∠AOD,则∠AOF+∠BOC=90°,由OC平分∠BOE,可得∠COE=∠BOC,∠AOF+∠COE=90°;由∠AOF+∠BOF=180°,可得∠AOF的补角是∠BOF;
(2)由OC平分∠BOE,∠BOE=60°,可得∠BOC=30°,再由∠AOD=∠BOC,即可得到∠AOD=30°;
(3)由(1)可得∠AOD=∠BOC=∠COE,再由OF⊥OC,得到∠DOF=∠COF=90°,则∠AOD+∠AOF=∠EOF+∠COE=90°,即可推出∠AOF=∠EOF.
【详解】
解:(1)∵OC⊥CD,
∴∠DOF=90°,
∴∠AOF+∠AOD=90°,
又∵∠BOC=∠AOD,
∴∠AOF+∠BOC=90°,
∵OC平分∠BOE,
∴∠COE=∠BOC,
∴∠AOF+∠COE=90°;
∴∠AOF的余角是,∠COE,∠BOC,∠AOD;
∵∠AOF+∠BOF=180°,
∴∠AOF的补角是∠BOF;
(2)∵OC平分∠BOE,∠BOE=60°,
∴∠BOC=30°,
又∵∠AOD=∠BOC,
∴∠AOD=30°;
(3)∠AOF=∠EOF,理由如下:
由(1)可得∠AOD=∠BOC=∠COE,
∵OF⊥OC,
∴∠DOF=∠COF=90°,
∴∠AOD+∠AOF=∠EOF+∠COE=90°,
∴∠AOF=∠EOF.
【点睛】
本题主要考查了与余角、补角有关的计算,等角的余角相等,垂线的定义,解题的关键在于熟知余角与补角的定义:如果两个角的相加的度数为90度,那么这两个角互余,如果两个角相加的度数为180度,那么这两个角互补.
10、见解析
【分析】
先根据垂直的定义可得,再根据角的和差可得,从而可得,然后根据平行线的判定即可得证.
【详解】
证明:∵(已知),
∴(垂直的定义),
∵,(已知),
∴(等量关系),
即,
∴(同旁内角互补,两直线平行).
【点睛】
本题考查了垂直、平行线的判定等知识点,熟练掌握平行线的判定是解题关键.
相关试卷
这是一份沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试随堂练习题,共28页。试卷主要包含了如图,不能推出a∥b的条件是等内容,欢迎下载使用。
这是一份七年级下册第十三章 相交线 平行线综合与测试练习题,共34页。试卷主要包含了如图,,交于点,,,则的度数是等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试练习,共27页。试卷主要包含了如图,直线b等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)