![2021-2022学年沪教版(上海)七年级数学第二学期第十三章相交线 平行线同步练习试题(精选)第1页](http://img-preview.51jiaoxi.com/2/3/12707437/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年沪教版(上海)七年级数学第二学期第十三章相交线 平行线同步练习试题(精选)第2页](http://img-preview.51jiaoxi.com/2/3/12707437/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2021-2022学年沪教版(上海)七年级数学第二学期第十三章相交线 平行线同步练习试题(精选)第3页](http://img-preview.51jiaoxi.com/2/3/12707437/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
数学七年级下册第十三章 相交线 平行线综合与测试随堂练习题
展开
这是一份数学七年级下册第十三章 相交线 平行线综合与测试随堂练习题,共26页。试卷主要包含了如图,不能推出a∥b的条件是,下列语句中等内容,欢迎下载使用。
七年级数学第二学期第十三章相交线 平行线同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法中正确的是( )A.锐角的2倍是钝角 B.两点之间的所有连线中,线段最短C.相等的角是对顶角 D.若AC=BC,则点C是线段AB的中点2、点P是直线外一点,为直线上三点,,则点P到直线的距离是( )A.2cm B.小于2cm C.不大于2cm D.4cm3、如图,直线a∥b,直线AB⊥AC,若∠1=52°,则∠2的度数是( )A.38° B.42° C.48° D.52°4、如图,不能推出a∥b的条件是( )A.∠4=∠2 B.∠3+∠4=180° C.∠1=∠3 D.∠2+∠3=180°5、如图,一条公路经过两次转弯后又回到原来的方向,如果第一次的拐角为150°,则第二次的拐角为( )A.40° B.50° C.140° D.150°6、如图,一条公路经过两次转弯后又回到原来的方向,如果第一次的拐角为140°,则第二次的拐角为( )A.40° B.50° C.140° D.150°7、下列语句中:①有公共顶点且相等的角是对顶角;②直线外一点到这条直线的垂线段,叫做点到直线的距离;③互为邻补角的两个角的平分线互相垂直;④经过一点有且只有一条直线与已知直线垂直;其中正确的个数有( )A.1个 B.2个 C.3个 D.4个8、如图,下列选项中,不能得出直线的是( )A.∠1=∠2 B.∠4=∠5 C.∠2+∠4=180° D.∠1=∠39、如图所示,将一张长方形纸片沿折叠,使顶点、分别落在点、处,交于点,,则( )A.20° B.40° C.70° D.110°10、下列说法:(1)两条不相交的直线是平行线;(2)过一点有且只有一条直线与已知直线平行;(3)在同一平面内两条不相交的线段一定平行;(4)过一点有且只有一条直线与已知直线垂直;(5)两点之间,直线最短;其中正确个数是( )A.0个 B.1个 C.2个 D.3个第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,直线AB、CD相交于点O,∠AOD+∠BOC=240°,则∠BOC的度数为__________°. 2、两个角和的两边互相平行,且角比角的2倍少30°,则这个角是____________度.3、如图,三条直线两两相交,其中同旁内角共有_______对,同位角共有______对,内错角共有_______对.4、如图所示,如果∠BAC+∠ACE+∠CEF=360°,则AB与EF的位置关系______ .5、如图,直线AB、CD相交于点O,OE⊥AB于点O,若∠COE=55°,则∠BOD为______. 三、解答题(10小题,每小题5分,共计50分)1、如图,直线AB与CD相交于点O,OE是∠COB的平分线,OE⊥OF,∠AOD=74°,求∠COF的度数.2、补全下列推理过程:已知:如图,CE平分∠BCD,∠1=∠2=70°,∠3=40°,求证:AB∥CD.证明:∵CE平分∠BCD(______)∴∠1=_____(_______)∵∠1=∠2=70°(已知)∴∠1=∠2=∠4=70°(________)∴AD∥BC(________)∴∠D=180°-_______=180°-∠1-∠4=40°∵∠3=40°(已知)∴______=∠3∴AB∥CD(_______)3、如图所示,已知∠AOD=∠BOC,请在图中找出∠BOC的补角,邻补角及对顶角.4、如图,直线交于点,于点,且的度数是的4倍.(1)求的度数;(2)求的度数.5、已知,直线AB、CD交于点O,EO⊥AB,∠EOC:∠BOD=7:11.(1)如图1,求∠DOE的度数;(2)如图2,过点O画出直线CD的垂线MN,请直接写出图中所有度数为125°的角.6、如图,在ABC中,DEAC,DFAB.(1)判断∠A与∠EDF之间的大小关系,并说明理由.(2)求∠A+∠B+∠C的度数.7、补全下列推理过程:如图,,,,试说明.解:,(已知),(垂直的定义).( ). ( ).(已知), (等量代换).( ).8、如图,在中,平分交于D,平分交于F,已知,求证:.9、已知,,三点在同一条直线上,平分,平分.(1)若,如图1,则 ;(2)若,如图2,求的度数;(3)若如图3,求的度数.10、根据要求画图或作答:如图所示,已知A、B、C三点.(1)连结线段AB;(2)画直线AC和射线BC;(3)过点B画直线AC的垂线,垂足为点D,则点A到直线BD的距离是线段_______的长度. -参考答案-一、单选题1、B【分析】根据锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,即可得到正确结论.【详解】解:A.锐角的2倍不一定是钝角,例如:锐角20°的2倍是40°是锐角,故不符合题意;B.两点之间的所有连线中,线段最短,正确;C.相等的角不一定是对顶角,故不符合题意;D.当点C在线段AB上,若AC=BC,则点C是线段AB的中点,故不符合题意;故选:B.【点睛】本题考查了锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,解题的关键是:熟练掌握这些性质.2、C【分析】根据“直线外一点到直线上各点的所有线段中,垂线段最短”进行解答.【详解】解:∵直线外一点与直线上各点连接的所有线段中,垂线段最短,且,∴点到直线的距离不大于,故选:C.【点睛】本题考查了垂线段最短的性质,熟记性质是解题的关键.3、A【分析】利用直角三角形的性质先求出∠B,再利用平行线的性质求出∠2.【详解】解:∵AB⊥AC,∠1=52°,∴∠B=90°﹣∠1=90°﹣52°=38°∵a∥b,∴∠2=∠B=38°.故选:A.【点睛】本题考查平行线的性质、两直线平行同位角相等,直角三角形两个锐角互余等知识,在基础考点,掌握相关知识是解题关键.4、B【分析】根据平行线的判定方法,逐项判断即可.【详解】解:、和是一对内错角,当时,可判断,故不符合题意;、和是邻补角,当时,不能判定,故符合题意;、和是一对同位角,当时,可判断,故不合题意;、和是一对同旁内角,当时,可判断,故不合题意;故选B.【点睛】本题考查了平行线的判定.解题的关键是:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.5、D【分析】由于拐弯前、后的两条路平行,可考虑用平行线的性质解答.【详解】解:∵拐弯前、后的两条路平行,∴∠B=∠C=150°(两直线平行,内错角相等).故选:D.【点睛】本题考查平行线的性质,解答此题的关键是将实际问题转化为几何问题,利用平行线的性质求解.6、C【分析】由于拐弯前、后的两条路平行,用平行线的性质求解即可.【详解】解:∵拐弯前、后的两条路平行,∴(两直线平行,内错角相等).故选:C.【点睛】本题考查平行线的性质,解答此题的关键是将实际问题转化为几何问题,利用平行线的性质求解.7、A【分析】根据对顶角,点到直线的距离,邻补角,角平分线以及垂直的定义分别判断.【详解】解:①有公共顶点且相等的角不一定是对顶角,故错误;②直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,故错误③互为邻补角的两个角的平分线互相垂直,故正确;④同一平面内,经过一点有且只有一条直线与已知直线垂直,故错误;故选A.【点睛】本题考查了对顶角,点到直线的距离,邻补角,角平分线以及垂直的定义,属于基础知识,要注意理解概念,抓住易错点.8、A【分析】根据平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,分别进行分析即可.【详解】解:A、∠1=∠2,不能判断直线,故此选项符合题意;B、根据同位角相等,两直线平行,可判断直线,故此选项不合题意;C、根据同旁内角互补,两直线平行,可判断直线,故此选项不合题意;D、根据内错角相等,两直线平行,可判断直线,故此选项不合题意.故选:A.【点睛】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.9、B【分析】根据题意可得,,再由折叠的性质得到,即可得解;【详解】∵,∴,,∵,∴,,由折叠可知:,则;故选B.【点睛】本题主要考查了折叠问题,平行线的性质,准确计算是解题的关键.10、B【分析】根据平面内相交线和平行线的基本性质逐项分析即可.【详解】解:(1)在同一平面内,两条不相交的直线是平行线,故原说法错误; (2)过直线外一点有且只有一条直线与已知直线平行,故原说法错误;(3)在同一平面内两条不相交的线段不一定平行,故原说法错误;(4)过一点有且只有一条直线与已知直线垂直,故原说法正确;(5)两点之间,线段最短,故原说法错误;故选:B.【点睛】本题考查平面内两直线的关系,及其推论等,掌握基本概念和推论是解题关键.二、填空题1、120【分析】由题意根据对顶角相等得出∠BOC=∠AOD进而结合∠AOD+∠BOC=240°即可求出∠BOC的度数.【详解】解:∵∠AOD+∠BOC=240°,∠BOC=∠AOD,∴∠BOC=120°.故答案为:120.【点睛】本题考查的是对顶角的性质,熟练掌握对顶角相等是解题的关键.2、或【分析】设为∠1和为∠2,根据图形可证得两角相等或互补,再利用方程建立等量关系求解即可.【详解】解:设的度数为,则的度数为,如图1,和互相平行,可得:∠2=∠3,同理:∠1=∠3,∴∠2=∠1,∴当两角相等时:,解得:, 如图2,和互相平行,可得:∠2+∠3=,而和互相平行,得∠1=∠3,∴∠2+∠1=,∴当两角互补时:,解得:,,故填:或.【点睛】本题考查平行线的性质和方程的应用,分类讨论思想是关键.3、6 12 6 【分析】根据同位角、同旁内角和内错角的定义判断即可;【详解】如图所示:同位角有:与;与;与,与;与;与;与;与;与;与;与;和,共有12对;同旁内角有:与;与;与;与;与;与,共有6对;内错角有:与;与;与;与;与;与,共有6对;故答案是:6;12;6.【点睛】本题主要考查了同位角、内错角、同旁内角的判断,准确分析判断是解题的关键.4、平行【分析】过点作,根据两直线平行,同旁内角互补,从而出,即可得出结果.【详解】解:过点作,∴,∵∠BAC+∠ACE+∠CEF=360°,∴,∴,∴,故答案为:平行.【点睛】本题考查了平行线的判定与性质以及平行线的推论,根据题意作出合理的辅助线是解本题的关键.5、35°【分析】根据垂直的定理得出的度数,然后根据已知条件得出的度数,最后根据对顶角相等求出即可.【详解】解:∵OE⊥AB, ∴∠AOE=90°,∵ ,∴∠AOC=90°- ,∴∠BOD=∠AOC= ,故答案为:35°.【点睛】本题考查了垂线的定义,对顶角的定义,根据题意得出的度数是解本题的关键.三、解答题1、53°【分析】首先根据对顶角相等可得∠BOC=74°,再根据角平分线的性质可得∠COE=∠COB=37°,再利用余角定义可计算出∠COF的度数.【详解】解:∵∠AOD=74°,∴∠BOC=74°,∵OE是∠COB的平分线,∴∠COE=∠COB=37°,∵OE⊥OF,∴∠EOF=90°,∴∠COF=90°-37°=53°.【点睛】本题考查了角平分线的性质、余角、对顶角的性质,关键是掌握对顶角相等,角平分线把角分成相等的两部分.2、见解析【分析】由已知CE平分∠BCD可得∠1= ∠4,利用等式的性质得出∠1=∠2=∠4=70°,根据直线判定定理得出AD∥BC,利用平角定义求出∠D=180°-∠BCD即可.【详解】证明:∵CE平分∠BCD( 已知 ),∴∠1= ∠4 ( 角平分线定义 ),∵∠1=∠2=70°已知,∴∠1=∠2=∠4=70°(等量代换),∴AD∥BC(内错角相等,两直线平行),∴∠D=180°-∠BCD=180°-∠1-∠4=40°,∵∠3=40°已知,∴ ∠D =∠3,∴AB∥CD(内错角相等,两直线平行).故答案为:已知;∠4 ,角平分线定义 ;等量代换;内错角相等,两直线平行;∠BCD;∠D;内错角相等,两直线平行.【点睛】本题考查平行线判定,角平分线定义,平角,掌握平行线判定方法,角平分线定义,平角是解题关键.3、∠BOC的补角有两个∠BOD和∠AOC;∠BOC的邻补角为∠AOC;∠BOC没有对顶角.【分析】由题意直接根据补角,邻补角及对顶角的定义进行分析即可找出.【详解】解:因为∠BOC+∠AOC=180º(平角定义),所以∠AOC是∠BOC的补角,∠AOD=∠BOC(已知),所以∠BOC+∠BOD=180º.所以∠BOD是∠BOC的补角.所以∠BOC的补角有两个:∠BOD和∠AOC.因为∠AOC和∠BOC相邻,所以∠BOC的邻补角为:∠AOC.∠BOC没有对顶角.【点睛】本题考查补角,邻补角及对顶角的定义,熟练掌握补角,邻补角及对顶角的定义是解题的关键.4、(1)∠AOD=36°,∠BOD=144°;(2)∠BOE =54°【分析】(1)先由的度数是的4倍,得到∠BOD=4∠AOD,再由邻补角互补得到∠AOD+∠BOD=180°,由此求解即可;(2)根据垂线的定义可得∠DOE=90°,则∠BOE=∠BOD-∠DOE=54°.【详解】解:(1)∵的度数是的4倍,∴∠BOD=4∠AOD,又∵∠AOD+∠BOD=180°,∴5∠AOD=180°,∴∠AOD=36°,∴∠BOD=144°;(2)∵OE⊥CD,∴∠DOE=90°,∴∠BOE=∠BOD-∠DOE=54°.【点睛】本题主要考查了垂线的定义,邻补角互补,熟练掌握邻补角互补是解题的关键.5、(1)145°;(2)图中度数为125°的角有:∠EOM,∠BOC,∠AOD.【分析】(1)由EO⊥AB,得到∠BOE=90°,则∠COE+∠BOD=90°,再由∠EOC:∠BOD=7:11,求出∠COE=35°,∠BOD=55°,则∠DOE=∠BOD+∠BOE=145°;(2)由MN⊥CD,得到∠COM=90°,则∠EOM=∠COE+∠COM=125°,再由∠BOD=55°,得到∠BOC=180°-∠BOD=125°,则∠AOD=∠BOC=125°.【详解】解:(1)∵EO⊥AB,∴∠BOE=90°,∴∠COE+∠BOD=90°,∵∠EOC:∠BOD=7:11,∴∠COE=35°,∠BOD=55°,∴∠DOE=∠BOD+∠BOE=145°;(2)∵MN⊥CD,∴∠COM=90°,∴∠EOM=∠COE+∠COM=125°,∵∠BOD=55°,∴∠BOC=180°-∠BOD=125°,∴∠AOD=∠BOC=125°,∴图中度数为125°的角有:∠EOM,∠BOC,∠AOD.【点睛】本题主要考查了几何中角度的计算,垂线的定义,解题的关键在于能够熟练掌握垂线的定义.6、(1)两角相等,见解析;(2)180°【分析】(1)根据平行线的性质得到∠A=∠BED,∠EDF=∠BED,即可得到结论;(2)根据平行线的性质得到∠C=∠EDB,∠B=∠FDC,利用平角的定义即可求解;【详解】(1)两角相等,理由如下:∵DE∥AC,∴∠A=∠BED(两直线平行,同位角相等).∵DF∥AB,∴∠EDF=∠BED(两直线平行,内错角相等),∴∠A=∠EDF(等量代换).(2)∵DE∥AC,∴∠C=∠EDB(两直线平行,同位角相等).∵DF∥AB,∴∠B=∠FDC(两直线平行,同位角相等).∵∠EDB+∠EDF+∠FDC=180°,∴∠A+∠B+∠C=180°(等量代换).【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.7、同位角相等,两直线平行;;两直线平行,同位角相等;;内错角相等,两直线平行【分析】根据题意读懂推理过程中每一步的推理依据即可完成解答.【详解】,(已知),(垂直的定义),(同位角相等,两直线平行),(两直线平行,同位角相等),(已知),(等量代换),(内错角相等,两直线平行).故答案为:同位角相等,两直线平行;;两直线平行,同位角相等;;内错角相等,两直线平行.【点睛】本题主要考查了平行线的判定与性质、垂直的定义等知识,关键是读懂推理过程,明确每一步的根据.8、见解析【分析】根据∠ADE=∠B可判定DE∥BC,根据平行线的性质得到∠ACB=∠AED,再根据角平分线的定义推出∠ACD=∠AEF,即可判定EF∥CD.【详解】证明:(已知),(同位角相等,两直线平行),(两直线平行,同位角相等),平分,平分(已知),,(角平分线的定义),(等量代换).(同位角相等,两直线平行).【点睛】此题考查了平行线的判定与性质,以及角平分线的定义,熟练掌握平行线的判定与性质是解题的关键.9、(1)90;(2)90°;(3)90°【分析】(1)由,,三点在同一条直线上,得出,则,由角平分线定义得出,,即可得出结果;(2)由,则,同(1)即可得出结果;(3)易证,同(1)得,,即可得出结果.【详解】解:(1),,三点在同一条直线上,,,,平分,平分,,,,故答案为:90;(2),,同(1)得:,,;(3),,同(1)得:,,.【点睛】本题考查了角平分线定义、角的计算等知识;熟练掌握角平分线定义是解题的关键.10、(1)画图见解析;(2)画图见解析;(3)画图见解析,【分析】(1)连接即可;(2)过两点画直线即可,以为端点画射线即可;(3)利用三角尺过画的垂线,垂足为 可得 从而可得点A到直线BD的距离是垂线段的长度.【详解】解:(1)如图,线段AB即为所求作的线段,(2)如图,直线AC和射线BC即为所求作的直线与射线,(3)如图,BD即为所画的垂线,点A到直线BD的距离是线段的长度.故答案为:【点睛】本题考查的是画直线,射线,线段,过一点画已知直线的垂线,点到直线的距离的含义,掌握画直线,射线,线段及画已知直线的垂线是解本题的关键.
相关试卷
这是一份初中数学第十三章 相交线 平行线综合与测试课堂检测,共31页。试卷主要包含了下列命题正确的是,如图,下列条件中能判断直线的是,下列说法中正确的有个等内容,欢迎下载使用。
这是一份2021学年第十三章 相交线 平行线综合与测试同步测试题,共32页。试卷主要包含了直线,如图,能与构成同位角的有等内容,欢迎下载使用。
这是一份初中数学沪教版 (五四制)七年级下册第十三章 相交线 平行线综合与测试达标测试,共26页。试卷主要包含了下列语句中,下列说法中正确的是等内容,欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/c2c32c447602804dcbaa70980ee6b1a1.jpg)