搜索
    上传资料 赚现金
    难点详解沪教版(上海)七年级数学第二学期第十二章实数专题测试练习题(含详解)
    立即下载
    加入资料篮
    难点详解沪教版(上海)七年级数学第二学期第十二章实数专题测试练习题(含详解)01
    难点详解沪教版(上海)七年级数学第二学期第十二章实数专题测试练习题(含详解)02
    难点详解沪教版(上海)七年级数学第二学期第十二章实数专题测试练习题(含详解)03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试复习练习题

    展开
    这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试复习练习题,共21页。试卷主要包含了下列说法中错误的是,0.64的平方根是,估算的值是在之间等内容,欢迎下载使用。

    沪教版(上海)七年级数学第二学期第十二章实数专题测试

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、下列说法正确的是(   

    A.是最小的正无理数 B.绝对值最小的实数不存在

    C.两个无理数的和不一定是无理数 D.有理数与数轴上的点一一对应

    2、化简计算的结果是(   

    A.12 B.4 C.﹣4 D.﹣12

    3、若,那么   

    A.1 B.-1 C.-3 D.-5

    4、已知2m﹣1和5﹣ma的平方根,a是(   

    A.9 B.81 C.9或81 D.2

    5、下列各数,其中无理数的个数有(  )

    A.4个 B.3个 C.2个 D.1个

    6、下列说法中错误的是(  )

    A.9的算术平方根是3 B.的平方根是

    C.27的立方根为 D.平方根等于±1的数是1

    7、0.64的平方根是(  

    A.0.8 B.±0.8 C.0.08 D.±0.08

    8、估算的值是在(    )之间

    A.5和6 B.6和7 C.7和8 D.8和9

    9、在3.14,中,无理数有(     

    A.1个 B.2个 C.3个 D.4个

    10、若 ,则   

    A. B. C. D.

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、如果一个数的平方等于16,那么这个数是________.

    2、一个正方形的面积为5,则它的边长为_____.

    3、若|2y+1|=0,则xy2的值是_____.

    4、比较大小: _____ (填“<”或“>”符号)

    5、xy表示两个数,规定新运算“*”如下:x*y=2x﹣3y,那么(3*5)*(﹣4)=_____.

    三、解答题(10小题,每小题5分,共计50分)

    1、计算题

    (1)

    (2)(﹣1)2021

    2、(1)计算

    (2)计算

    (3)解方程

    (4)解方程组

    3、已知

    (1)求xy的值;

    (2)求x+y的算术平方根.

    4、计算下列各题:

    (1)

    (2)

    (3)

    5、已知xy满足,求xy的值.

    6、计算:

    7、已知正数a的两个不同平方根分别是2x﹣2和6﹣3xa﹣4b的算术平方根是4.

    (1)求这个正数a以及b的值;

    (2)求b2+3a﹣8的立方根.

    8、求下列各数的立方根:

    (1)729

    (2)

    (3)

    (4)

    9、如图将边长为2cm的小正方形与边长为xcm的大正方形放在一起.

    (1)用xcm表示图中空白部分的面积;

    (2)当x=5cm时空白部分面积为多少?

    (3)如果大正方形的面积恰好比小正方形的面积大165cm2,那么大正方形的边长应该是多少?

    10、大家知道是无理数,而无理数是无限不循环小数.因此的小数部分我们不可能全部写出来,于是小燕用来表示的小数部分.理由是:对于正无理数,用本身减去其整数部分,差就是其小数部分.因为的整数部分为1,所以的小数部分为

    参考小燕同学的做法,解答下列问题:

    (1)写出的小数部分为________;

    (2)已知的小数部分分别为ab,求a2+2abb2的值;

    (3)如果,其中x是整数,0<y<1,那么=________

    (4)设无理数m为正整数)的整数部分为n,那么的小数部分为________(用含mn的式子表示).

     

    -参考答案-

    一、单选题

    1、C

    【分析】

    利用正无理数,绝对值,以及数轴的性质判断即可.

    【详解】

    解:、不存在最小的正无理数,不符合题意;

    、绝对值最小的实数是0,不符合题意;

    、两个无理数的和不一定是无理数,例如:,符合题意;

    、实数与数轴上的点一一对应,不符合题意.

    故选:C.

    【点睛】

    本题考查了实数的运算,实数与数轴,解题的关键是熟练掌握各自的性质.

    2、B

    【分析】

    根据算术平方根和立方根的计算法则进行求解即可.

    【详解】

    解:

    故选B.

    【点睛】

    本题主要考查了求算术平方根和立方根,解题的关键在于能够熟练掌握立方根和算术平方根的求解方法.

    3、D

    【分析】

    由非负数之和为,可得,解方程求得,代入问题得解.

    【详解】

    解:

    解得,

    故选:D

    【点睛】

    本题考查了代数式的值,正确理解绝对值及算数平方根的非负性是解答本题的关键.

    4、C

    【分析】

    分两种情况讨论求解:当2m﹣1与5﹣ma的两个不同的平方根和当2m﹣1与5﹣ma的同一个平方根.

    【详解】

    解:若2m﹣1与5﹣m互为相反数,

    则2m﹣1+5﹣m=0,

    m=﹣4,

    ∴5﹣m=5﹣(﹣4)=9,

    a=92=81,

    若2m﹣1=5﹣m

    m=2,

    ∴5﹣m=5﹣2=3,

    a=32=9,

    故选C.

    【点睛】

    本题主要考查了平方根的定义,解题的关键在于能够利用分类讨论的思想求解.

    5、C

    【分析】

    无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.

    【详解】

    解:,是整数,属于有理数;

    是分数,属于有理数;

    无理数有,共2个

    故选:C.

    【点睛】

    此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001……,等有这样规律的数.

    6、C

    【分析】

    根据平方根,算术平方根,立方根的性质,即可求解.

    【详解】

    解:A、9的算术平方根是3,故本选项正确,不符合题意;

    B、因为 ,4的平方根是 ,故本选项正确,不符合题意;

    C、27的立方根为3,故本选项错误,符合题意;

    D、平方根等于±1的数是1,故本选项正确,不符合题意;

    故选:C

    【点睛】

    本题主要考查了平方根,算术平方根,立方根的性质,熟练掌握平方根,算术平方根,立方根的性质是解题的关键.

    7、B

    【分析】

    根据如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根,由此求解即可.

    【详解】

    解:∵(±0.8)2=0.64 

    ∴0.64的平方根是±0.8,

    故选:B.

    【点睛】

    本题主要考查了平方根的概念,解题的关键在于掌握平方根的正负两种情况.

    8、C

    【分析】

    根据题意可知判断的值在5、6、7、8、9哪个数之间,即的值在2、3、4、5、6哪个数之间,2、3、4、5、6可表示为,显然,即,故

    【详解】

    故选:C.

    【点睛】

    本题考查了算术平方根估计范围,将先看作进行比较,再加上3是解题的关键.

    9、C

    【分析】

    分别根据无理数、有理数的定义即可判定选择项.

    【详解】

    解:3.14是有理数,是无理数,是无理数,是有理数,是有理数,是无理数,是有理数,是有理数;

    ∴无理数有三个,

    故选C.

    【点睛】

    此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.

    10、B

    【分析】

    先利用的值,求出,再利用负整数指数幂的运算法则,得到的值.

    【详解】

    解:

    (舍去),

    故选:B.

    【点睛】

    本题主要是考查了开二次根式以及负整数指数幂的运算法则,熟练掌握负整数指数幂的运算法则:,是解决本题的关键.

    二、填空题

    1、

    【分析】

    根据平方根的定义进行解答即可.

    【详解】

    解:∵

    ∴如果一个数的平方等于16,那么这个数是

    故答案为:

    【点睛】

    本题考查了平方根和立方根的概念和求法,理解、记忆平方根和立方根的概念是解题关键.平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数)

    2、

    【分析】

    根据正方形面积根式求出边长,即可得出答案.

    【详解】

    解:边长为:

    故答案为

    【点睛】

    本题考查了算术平方根,关键是会求一个数的算术平方根.

    3、

    【分析】

    先根据算术平方根和绝对值的非负性求出的值,再代入计算即可得.

    【详解】

    解:

    解得

    故答案为:

    【点睛】

    本题考查了算术平方根和绝对值的非负性、代数式求值,熟练掌握算术平方根和绝对值的非负性是解题关键.

    4、>

    【分析】

    根据实数比较大小的方法判断即可.

    【详解】

    ∵正数大于一切负数,

    故答案为:>.

    【点睛】

    此题主要考查实数的大小比较,熟练掌握实数比较大小的方法是解题的关键.

    5、-6

    【分析】

    根据找出新的运算方法,再根据新的运算方法计算即可.

    【详解】

    故答案为:

    【点睛】

    本题考查了新定义下的实数运算,解题关键是根据题目给出的式子,找出新的运算方法,再根据新的运算方法计算要求的式子.

    三、解答题

    1、(1)2+2;(2)4

    【分析】

    (1)原式利用立方根性质及绝对值的代数意义化简,合并即可得到结果;

    (2)原式利用乘方的意义,算术平方根定义计算即可得到结果.

    【详解】

    解:(1)原式=2﹣2+|﹣4|

    =2﹣2+4

    =2+2;

    (2)原式=﹣1+5

    =4.

    【点睛】

    本题考查了实数的混合运算,正确的求得立方根和算术平方根是解题的关键.

    2、(1);(2);(3);(4)

    【分析】

    (1)先计算算术平方根与立方根,再计算加减法即可得;

    (2)先化简绝对值,再计算实数的加减法即可得;

    (3)利用平方根解方程即可得;

    (4)利用加减消元法解二元一次方程组即可得.

    【详解】

    解:(1)原式

    (2)原式

    (3)

    (4)

    由②①得:

    解得

    代入①得:

    解得

    故方程组的解为

    【点睛】

    本题考查了算术平方根与立方根、实数的加减、解二元一次方程组等知识点,熟练掌握各运算法则和方程组的解法是解题关键.

    3、(1);(2)2

    【分析】

    (1)根据绝对值和平方根的非负性求出xy的值;

    (2)先计算的值,即可得出的算术平方根.

    【详解】

    (1)由题可得:

    解得:

    (2)

    ∵4的算术平方根为2,

    的算术平方根为2.

    【点睛】

    本题考查绝对值与平方根的性质,以及算术平方根,掌握绝对值和平方根的非负性是解题的关键.

    4、

    (1)-3

    (2)-6x

    (3)4y-3xz

    【分析】

    (1)先化简零指数幂,负整数指数幂,有理数的乘方,绝对值,然后再计算;

    (2)先利用积的乘方运算法则计算乘方,然后利用整式乘除法运算法则从左往右依次计算.

    (3)根据多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.

    (1)

    解:原式

    (2)

    解:原式

    (3)

    解:

    【点睛】

    本题考查整式的混合运算,负整数指数幂,零指数幂,掌握积的乘方(abn=anbn运算法则,整式的除法,理解a0=1(a≠0),a≠0),牢记法则是解题关键.

    5、x=5;y=2

    【分析】

    根据非负数的性质可得关于xy的方程组,求解可得其值;

    【详解】

    解:由题意可得

    联立得

    解方程组得:

    xy的值分别为5、2.

    【点睛】

    此题考查的是非负数的性质,解二元一次方程组,掌握绝对值及算术平方根的非负性是解决此题的关键.

    6、

    【分析】

    分别计算乘方运算,零次幂,算术平方根,负整数指数幂,再合并即可.

    【详解】

    解:原式

    【点睛】

    本题考查的是零次幂的含义,求解一个数的算术平方根,负整数指数幂的含义,掌握以上基础运算是解题的关键.

    7、(1);(2)b2+3a﹣8的立方根是5

    【分析】

    (1)根据题意可得,2x﹣2+6﹣3x=0,即可求出a=36,再根据a﹣4b的算术平方根是4,求出b的值即可;

    (2)将(1)中所求ab的值代入代数式b2+3a﹣8求值,再根据立方根定义计算即可求解.

    【详解】

    解:(1)∵正数a的两个不同平方根分别是2x﹣2和6﹣3x

    ∴2x﹣2+6﹣3x=0,

    x=4,

    ∴2x﹣2=6,

    a=36,

    a﹣4b的算术平方根是4,

    a﹣4b=16,

    ∴36-4b=16

    b=5;

    (2)当a=36,b=5时,b2+3a﹣8=25+36×3﹣8=125,

    b2+3a﹣8的立方根是5.

    【点睛】

    本题考查平方根的性质,算术平方根定义,立方根定义,掌握平方根的性质,算术平方根定义,立方根定义是解题关键.

    8、(1)9;(2);(3);(4)-5

    【分析】

    根据立方根的定义,找到一个数,使其立方等于已知的数,从而可得答案.

    【详解】

    解:(1)因为93=729,

    所以729的立方根是9,即

    (2),因为

    所以的立方根是,即

    (3)因为

    所以的立方根是,即

    (4).

    【点睛】

    本题考查的是求解一个数的立方根,掌握“利用立方根的含义求解一个数的立方根”是解本题的关键.

    9、(1);(2);(3)13cm

    【分析】

    (1)空白部分面积=小正方形的面积+大正方形的面积-阴影部分两个三角形的面积,据此可得代数式;

    (2)将x=5代入计算可得;

    (3)根据题意列出方程求解即可.

    【详解】

    解:(1)空白部分面积为

    (2)当x=5时,空白部分面积为

    (3)根据题意得,

    解得x=13或-13(舍去),

    所以,大正方形的边长为13cm

    【点睛】

    此题考查列代数式问题,解题的关键是根据图形得出计算空白部分面积的关系式.

    10、(1);(2)1;(3);(4)

    【分析】

    (1)由题意易得,则有的整数部分为3,然后问题可求解;

    (2)由题意易得,则有,然后可得,然后根据完全平方公式可进行求解;

    (3)由题意易得,则有的小数部分为,然后可得,进而问题可求解;

    (4)根据题意可直接进行求解.

    【详解】

    解:(1)∵

    的整数部分为3,

    的小数部分为

    故答案为

    (2)∵

    的小数部分分别为ab

    (3)由可知

    的小数部分为

    x是整数,0<y<1,

    故答案为

    (4)∵无理数m为正整数)的整数部分为n

    的小数部分为

    的小数部分即为的小数部分加1,为

    故答案为

    【点睛】

    本题主要考查立方根、无理数的估算及代数式的值,熟练掌握立方根、无理数的估算及代数式的值是解题的关键.

     

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试一课一练: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试一课一练,共26页。试卷主要包含了下列运算正确的是,a为有理数,定义运算符号▽,关于的叙述,错误的是,下列等式正确的是,下列判断,若关于x的方程等内容,欢迎下载使用。

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试综合训练题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试综合训练题

    沪教版 (五四制)七年级下册第十二章 实数综合与测试同步达标检测题: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试同步达标检测题,共21页。试卷主要包含了下列说法正确的是,下列说法中,正确的是,下列说法不正确的是,下列判断,在下列四个实数中,最大的数是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map