沪教版 (五四制)七年级下册第十二章 实数综合与测试课后复习题
展开沪教版(上海)七年级数学第二学期第十二章实数章节测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、3的算术平方根是( )
A.±3 B. C.-3 D.3
2、下列各数是无理数的是( )
A. B.3.33 C. D.
3、下列说法正确的是( )
A.的相反数是 B.2是4的平方根
C.是无理数 D.
4、3的算术平方根为( )
A. B.9 C.±9 D.±
5、下列四个数中,最小的数是( )
A.﹣3 B.﹣ C.0 D.﹣π
6、下列说法正确的是( )
A.是分数
B.0.1919919991…(每相邻两个1之间9的个数逐次加1)是有理数
C.﹣3x2y+4x﹣1是三次三项式,常数项是1
D.单项式﹣的次数是2,系数为﹣
7、一个正方体的体积是5m3,则这个正方体的棱长是( )
A.m B.m C.25m D.125m
8、下列说法不正确的是( )
A.0的平方根是0 B.一个负数的立方根是一个负数
C.﹣8的立方根是﹣2 D.8的算术平方根是2
9、在3.14,,,,,,,中,无理数有( )
A.1个 B.2个 C.3个 D.4个
10、下列运算正确的是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、按一定规律排列的一列数:3,32,3﹣1,33,3-4,37,3﹣11,318,…,若a,b,c表示这列数中的连续三个数,猜想a,b,c满足的关系式是______.
2、实数在数轴上的位置如图所示,则化简的结果为________.
3、若,则x+1的平方根是 _____.
4、已知、两个实数在数轴上的对应点如上图所示:请你用“”或“”完成填空:
(1)________;(2)________ ;(3)________;
(4)________;(5)________;(6)________
5、的算术平方根是 _____;﹣64的立方根是 _____.
三、解答题(10小题,每小题5分,共计50分)
1、计算:
(1).
(2)+()2﹣
2、已知一个正数x的平方根是a+3和2a-15,求a和x的值
3、阅读材料,回答问题.
下框中是小马同学的作业,老师看了后,找来小马.
问道:“小马同学,你标在数轴上的两个点对应题中两个无理数,是吗?”
小马点点头.
老师又说:“你这两个无理数对应的点找得非常准确,遗憾的是没有完成全部解答.”
请把实数|﹣|,﹣π,﹣4,,2表示在数轴上,并比较它们的大小(用<号连接).
解:
请你帮小马同学将上面的作业做完.
4、求下列各数的立方根:
(1)729
(2)
(3)
(4)
5、计算
6、计算:.
7、已知正数a的两个不同平方根分别是2x﹣2和6﹣3x,a﹣4b的算术平方根是4.
(1)求这个正数a以及b的值;
(2)求b2+3a﹣8的立方根.
8、已知的立方根是2,算术平方根是4,求的算术平方根.
9、已知a、b互为倒数,c、d互为相反数,求-+(c+d)2+1的值.
10、计算:.
-参考答案-
一、单选题
1、B
【分析】
根据算术平方根的定义求解即可,平方根:如果一个数的平方等于,那么这个数就叫的平方根,其中属于非负数的平方根称之为算术平方根.
【详解】
解:3的算术平方根是
故选B
【点睛】
本题考查了算术平方根的定义,掌握定义是解题的关键.
2、C
【分析】
无理数是指无限不循环小数,由此概念以及立方根的定义分析即可.
【详解】
解:,是有理数,3.33和是有理数,是无理数,
故选:C.
【点睛】
本题考查求一个数的立方根,以及无理数的识别,掌握立方根的定义以及无理数的基本定义是解题关键.
3、B
【分析】
根据立方根和平方根以及相反数和实数的定义进行判断即可得出答案.
【详解】
解:A. 负数没有平方根,故无意义,A错误;
B.,故2是4的平方根,B正确;
C.是有理数,故C错误;
D. ,故D错误;
故选B.
【点睛】
本题考查了相反数,平方根,立方根、实数的知识点,解题的关键是熟练掌握相反数,平方根,立方根的定义.
4、A
【分析】
利用算术平方根的定义求解即可.
【详解】
3的算术平方根是.
故选:A.
【点睛】
本题考查的是算术平方根的概念,属于基础题目,掌握算术平方根的概念是解题的关键.
5、D
【分析】
正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断出各数中最小的是哪个即可.
【详解】
解:∵,,,,
∴,
∴最小的数是,
故选D.
【点睛】
此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.
6、D
【分析】
根据有理数的定义、单项式次数和系数的定义,多项式的定义进行逐一判断即可.
【详解】
解:A、是无限不循环小数,不是分数,故此选项不符合题意;
B、0.1919919991…(每相邻两个1之间9的个数逐次加1)是无限不循环小数,不是有理数,故此选项不符合题意;
C、﹣3x2y+4x﹣1是三次三项式,常数项是-1,故此选项不符合题意;
D、单项式﹣的次数是2,系数为﹣,故此选项符合题意;
故选D.
【点睛】
本题主要考查了有理数的定义、单项式次数和系数的定义,熟知定义是解题的关键:有理数是整数和分数的统称;表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数;几个单项式的和的形式叫做多项式,每个单项式叫做多项式的项,不含字母的项叫做常数项,多项式里,次数最高项的次数叫做多项式的次数.
7、B
【分析】
根据正方体的体积公式:V=a3,把数据代入公式解答.
【详解】
解:××=5(立方米),
答:这个正方体的棱长是米,
故选:B.
【点睛】
此题主要考查正方体体积公式的灵活运用,关键是熟记公式.
8、D
【分析】
直接利用算术平方根、平方根、立方根的定义分析得出答案.
【详解】
解:A、0的平方根是0,原说法正确,故此选项不符合题意;
B、一个负数的立方根是一个负数,原说法正确,故此选项不符合题意;
C、﹣8的立方根是﹣2,原说法正确,故此选项不符合题意;
D、8的算术平方根是2,原说法不正确,故此选项符合题意;
故选:D.
【点睛】
此题主要考查了算术平方根、平方根、立方根,熟练掌握算术平方根、平方根、立方根的定义是解题的关键.
9、C
【分析】
分别根据无理数、有理数的定义即可判定选择项.
【详解】
解:3.14是有理数,是无理数,是无理数,是有理数,是有理数,是无理数,是有理数,是有理数;
∴无理数有三个,
故选C.
【点睛】
此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.
10、B
【分析】
根据立方根,算术平方根和有理数的乘方计算法则进行求解判断即可.
【详解】
解:A、,计算错误,不符合题意;
B、,计算正确,符合题意;
C、,计算错误,不符合题意;
D、,计算错误,不符合题意;
故选B.
【点睛】
本题主要考查了立方根,算术平方根,有理数的乘方,熟知相关计算法则是解题的关键.
二、填空题
1、bc=a
【分析】
首先判断出这列数中,3的指数各项依次为 1,2,﹣1,3,﹣4,7,﹣11,18…,从第三个数起,前两数相除等于第三个数,可得这列数中的连续三个数,满足a÷b=c,据此解答即可.
【详解】
∵3,32,3﹣1,33,3﹣4,37,3﹣11,318,…,
,,,,,,…,
∴a,b,c满足的关系式是a÷b=c,即bc=a.
故答案为:bc=a.
【点睛】
此题考查了实数的规律问题,同底数幂的除法运算,负整数指数幂等知识,解题的关键是正确分析出题目中指数之间的规律.
2、1
【分析】
由数轴可知,则有,然后问题可求解.
【详解】
解:由数轴可知:,
∴;
故答案为1.
【点睛】
本题主要考查数轴、算术平方根及整式的加减运算,熟练掌握数轴、算术平方根及整式的加减运算是解题的关键.
3、
【分析】
根据平方根的定义求得的值,进而根据平方根的意义即可求得答案,平方根:如果一个数的平方等于,那么这个数就叫的平方根,其中属于非负数的平方根称之为算术平方根.立方根:如果一个数的立方等于,那么这个数叫做的立方根.
【详解】
解:∵
∴
,的平方根是
故答案为:
【点睛】
本题主要考查了平方根和立方根的定义,解决本题的关键是要熟练根据平方根的意义和平方根的定义进行求解.
4、< > < > > <
【分析】
根据数轴可知:b>0,a<0,根据绝对值的非负性得|a|>|b|,即可得.
【详解】
解: ∵由数轴可知:b>0,a<0,|a|>|b|,
∴(1)a<b,(2)|a|>|b|,(3)a+b<0,
(4)b−a>0,(5)a+b>a−b,(6),
故答案为:(1)<;(2)>;(3)<;(4)>;(5)>;(6)<.
【点睛】
本题考查了数轴与实数,绝对值的非负性,解题的关键是掌握绝对值的非负性.
5、 ﹣4
【分析】
根据立方根、算术平方根的概念求解.
【详解】
解:=5,5的算术平方根是,
∴的算术平方根是;
﹣64的立方根是﹣4.
故答案为:,﹣4.
【点睛】
本题考查了立方根、算术平方根的知识,掌握各知识点的概念是解答本题的关键.
三、解答题
1、(1);(2)
【分析】
(1)先根据立方根、算术平方根和零指数幂的意义化简,再根据有理数的运算法则计算;
(2)先根据立方根和算术平方根的意义化简,再根据有理数的运算法则计算.
【详解】
(1)原式,
;
(2)原式,
.
【点睛】
此题考查了实数的运算,熟练掌握立方根和算术平方根的意义是解本题的关键.
2、4,49
【分析】
根据一个正数有2个平方根,它们互为相反数,再列方程,解方程即可得到答案.
【详解】
解:∵正数有2个平方根,它们互为相反数,
∴,
解得,
所以.
【点睛】
本题考查的是平方根的含义,掌握“一个正数有两个平方根且两个平方根互为相反数”是解本题的关键.
3、图见解析,﹣4<﹣π<|﹣|<2<.
【分析】
根据和确定原点,根据数轴上的点左边小于右边的排序依次表示即可.
【详解】
把实数||,,,,2表示在数轴上如图所示,
<<||<2<.
【点睛】
本题考查用数轴比较点的大小,根据题意先确定原点是解题的关键.
4、(1)9;(2);(3);(4)-5
【分析】
根据立方根的定义,找到一个数,使其立方等于已知的数,从而可得答案.
【详解】
解:(1)因为93=729,
所以729的立方根是9,即;
(2),因为,
所以的立方根是,即;
(3)因为,
所以的立方根是,即;
(4).
【点睛】
本题考查的是求解一个数的立方根,掌握“利用立方根的含义求解一个数的立方根”是解本题的关键.
5、
【分析】
根据立方根,算术平方根,绝对值的计算法则进行求解即可.
【详解】
解:
.
【点睛】
本题主要考查了实数的运算,解题的关键在于能够熟练掌握求立方根,算术平方根,绝对值的计算法则.
6、2﹣π.
【分析】
根据题意利用算术平方根性质和去绝对值以及乘方运算先化简各式,然后再进行计算.
【详解】
解:
=3﹣(π﹣)+(﹣1)﹣
=3﹣π+﹣1﹣
=2﹣π.
【点睛】
本题考查含乘方和算术平方根的实数运算,熟练掌握利用算术平方根性质和去绝对值以及乘方运算法则进行化简是解题的关键.
7、(1),;(2)b2+3a﹣8的立方根是5
【分析】
(1)根据题意可得,2x﹣2+6﹣3x=0,即可求出a=36,再根据a﹣4b的算术平方根是4,求出b的值即可;
(2)将(1)中所求a、b的值代入代数式b2+3a﹣8求值,再根据立方根定义计算即可求解.
【详解】
解:(1)∵正数a的两个不同平方根分别是2x﹣2和6﹣3x,
∴2x﹣2+6﹣3x=0,
∴x=4,
∴2x﹣2=6,
∴a=36,
∵a﹣4b的算术平方根是4,
∴a﹣4b=16,
∴36-4b=16
∴b=5;
(2)当a=36,b=5时,b2+3a﹣8=25+36×3﹣8=125,
∴b2+3a﹣8的立方根是5.
【点睛】
本题考查平方根的性质,算术平方根定义,立方根定义,掌握平方根的性质,算术平方根定义,立方根定义是解题关键.
8、
【分析】
根据立方根、算术平方根解决此题.
【详解】
解:由题意得:2a+4=8,3a+b-1=16.
∴a=2,b=11.
∴4a+b=8+11=19.
∴4a+b的算术平方根为.
【点睛】
本题考查了立方根、算术平方根,熟练掌握立方根、算术平方根是解决本题的关键.
9、0
【分析】
互为倒数的两个数相乘等于1,互为相反数的两个数相加等于0,再把结果代入式子计算求解即可.
【详解】
解:根据题意得:ab=1,c+d=0,
则-+(c+d)2+1的值=-1+0+1=0.
【点睛】
本题考查倒数和相反数的性质应用,掌握理解他们是本题解题关键.
10、1
【分析】
分别根据数的开方法则、0指数幂及负整数指数幂的计算法则计算出各数,再进行加减运算即可.
【详解】
解:
【点睛】
本题考查的是实数的运算,熟知数的开方法则、0指数幂及负整数指数幂的计算法则是解答此题的关键.
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试一课一练: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试一课一练,共26页。试卷主要包含了下列运算正确的是,a为有理数,定义运算符号▽,关于的叙述,错误的是,下列等式正确的是,下列判断,若关于x的方程等内容,欢迎下载使用。
沪教版 (五四制)七年级下册第十二章 实数综合与测试课后作业题: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试课后作业题,共23页。试卷主要包含了的相反数是,4的平方根是,下列各数中,最小的数是等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试随堂练习题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试随堂练习题,共19页。试卷主要包含了下列判断中,你认为正确的是,在下列各数,下列等式正确的是.,9的平方根是,10的算术平方根是等内容,欢迎下载使用。

