数学第十二章 实数综合与测试课后测评
展开沪教版(上海)七年级数学第二学期第十二章实数定向练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、9的平方根是( )
A.±3 B.-3 C.3 D.
2、如果一个正数a的两个不同平方根是2x-2和6-3x,则这个正数a的值为( )
A.4 B.6 C.12 D.36
3、如果x>1,那么x﹣1,x,x2的大小关系是( )
A.x﹣1<x<x2 B.x<x﹣1<x2 C.x2<x<x﹣1 D.x2<x﹣1<x
4、下列各数,,,,其中无理数的个数有( )
A.4个 B.3个 C.2个 D.1个
5、已知2m﹣1和5﹣m是a的平方根,a是( )
A.9 B.81 C.9或81 D.2
6、下列说法中错误的是( )
A.9的算术平方根是3 B.的平方根是
C.27的立方根为 D.平方根等于±1的数是1
7、若一个数的算术平方根与它的立方根的值相同,则这个数是( )
A.1 B.0和1 C.0 D.非负数
8、下列各数是无理数的是( )
A. B.3.33 C. D.
9、三个实数,2,之间的大小关系( )
A.>>2 B.>2> C.2>> D.<2<
10、有一个数值转换器,原理如下:当输入的x为64时,输出的y是( )
A. B.2 C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知a,b 是有理数,且满足,那么a=________,b =________.
2、化简=_______,=_______.
3、已知x2=36,那么x=___________;如果(-a)2=(7)2,那么a=_____________
4、计算:______.
5、如图,正方形ABCD是由四个长都为a,宽都为b(a>b)的小长方形拼接围成的.已知每个小长方形的周长为18,面积为,我们可以通过计算正方形ABCD面积的方法求出代数式a﹣b的值,则这个值为 _____.
三、解答题(10小题,每小题5分,共计50分)
1、小明打算用一块面积为900cm2的正方形木板,沿着边的方向裁出一个长方形面积为588cm2的桌面,并且长宽之比为4∶3,你认为能做到吗?如果能,计算出桌面的长和宽;如果不能,请说明理由.
2、任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1.现对72进行如下操作:72第一次[]=8,第二次[]=2,第三次[]=1,这样对72只需进行3次操作变为1.
(1)对10进行1次操作后变为_______,对200进行3次作后变为_______;
(2)对实数m恰进行2次操作后变成1,则m最小可以取到_______;
(3)若正整数m进行3次操作后变为1,求m的最大值.
3、解方程:
(1)x2=81;
(2)(x﹣1)3=27.
4、阅读下列材料:
∵,
∴,
∴的整数部分为3,小数部分为.
请你观察上述的规律后试解下面的问题:如果的整数部分为,的小数部分为,求的值.
5、计算下列各题:
(1);
(2).
(3).
6、计算:(π-4)0+|-6|-+
7、已知x,y满足,求x、y的值.
8、计算:.
9、解方程:
(1)x2=25;
(2)8(x+1)3=125.
10、求下列各式中的x:
(1);
(2).
-参考答案-
一、单选题
1、A
【分析】
根据平方根的定义进行判断即可.
【详解】
解:∵(±3)2=9
∴9的平方根是±3
故选:A.
【点睛】
本题考查的是平方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.
2、D
【分析】
根据正数平方根有两个,它们是互为相反数,可列方程2x-2+6-3x=0,解方程即可.
【详解】
解:∵一个正数a的两个不同平方根是2x-2和6-3x,
∴2x-2+6-3x=0,
解得:x=4,
∴2x-2=2×4-2=8-2=6,
∴正数a=62=36.
故选择D.
【点睛】
本题考查平方根性质,一元一次方程,掌握正数有两个平方根,它们是互为相反数,零的平方根是零,负数没有平方根是解题关键.
3、A
【分析】
根据,即可得到,,由此即可得到答案.
【详解】
解:∵,
∴,,
∴,
故选A.
【点睛】
本题主要考查了有理数比较大小,负整数指数幂,解题的关键在于能够熟练掌握实数比较大小的方法.
4、C
【分析】
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【详解】
解:,是整数,属于有理数;
是分数,属于有理数;
无理数有,,共2个
故选:C.
【点睛】
此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001……,等有这样规律的数.
5、C
【分析】
分两种情况讨论求解:当2m﹣1与5﹣m是a的两个不同的平方根和当2m﹣1与5﹣m是a的同一个平方根.
【详解】
解:若2m﹣1与5﹣m互为相反数,
则2m﹣1+5﹣m=0,
∴m=﹣4,
∴5﹣m=5﹣(﹣4)=9,
∴a=92=81,
若2m﹣1=5﹣m,
∴m=2,
∴5﹣m=5﹣2=3,
∴a=32=9,
故选C.
【点睛】
本题主要考查了平方根的定义,解题的关键在于能够利用分类讨论的思想求解.
6、C
【分析】
根据平方根,算术平方根,立方根的性质,即可求解.
【详解】
解:A、9的算术平方根是3,故本选项正确,不符合题意;
B、因为 ,4的平方根是 ,故本选项正确,不符合题意;
C、27的立方根为3,故本选项错误,符合题意;
D、平方根等于±1的数是1,故本选项正确,不符合题意;
故选:C
【点睛】
本题主要考查了平方根,算术平方根,立方根的性质,熟练掌握平方根,算术平方根,立方根的性质是解题的关键.
7、B
【分析】
根据立方根和算术平方根的性质可知,立方根等于它本身的实数0、1或-1,算术平方根等于它本身的实数是0或1,由此即可解决问题.
【详解】
解:∵立方根等于它本身的实数0、1或−1,算术平方根等于它本身的数是0和1,
∴一个数的算术平方根与它的立方根的值相同的是0和1,
故选B.
【点睛】
主要考查了立方根,算术平方根的性质.牢牢掌握立方根和算术平方根等于它本身的实数是解答本题的关键点.
8、C
【分析】
无理数是指无限不循环小数,由此概念以及立方根的定义分析即可.
【详解】
解:,是有理数,3.33和是有理数,是无理数,
故选:C.
【点睛】
本题考查求一个数的立方根,以及无理数的识别,掌握立方根的定义以及无理数的基本定义是解题关键.
9、A
【分析】
,根据被开方数的大小即判断这三个数的大小关系
【详解】
2<<
故选A
【点睛】
本题考查了实数大小比较,掌握无理数的估算是解题的关键.
10、C
【分析】
直接利用立方根以及算术平方根、无理数分析得出答案.
【详解】
解:由题意可得:64的立方根为4,4的算术平方根是2,2的算术平方根是,
即.
故选:C.
【点睛】
本题主要考查了立方根以及算术平方根、无理数的定义,解题的关键是正确掌求一个数的算术平方根.
二、填空题
1、-2 -1
【分析】
利用平方与算术平方根的非负性即可解决.
【详解】
∵,,且
∴,
∴,
故答案为:-2,-1
【点睛】
本题考查了有理数的平方的非负性质及算术平方根的非负性质,即几个非负数的和为零,则这几个数都为零.掌握这个性质是本题的关键.
2、2 3
【分析】
由题意直接根据立方根和算术平方根的性质进行化简即可得出答案.
【详解】
解:=2,=3.
故答案为:2,3.
【点睛】
本题考查立方根和算术平方根的化简,熟练掌握立方根和算术平方根的性质是解题的关键.
3、±6##6或-6 ±7
【分析】
根据平方根的定义求解即可.
【详解】
解:∵(±6)2=36,
∴当x2=36时,则x=±6;
∵(-a)2=(7)2,
∴a2=49,
∵(±7)2=49,
∴a=±7;
故答案为:±6;±7.
【点睛】
本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,如果一个数的平方等于a,则这个数叫做a的平方根,即x2=a,那么x叫做a的平方根.0的平方根是0;正数有两个不同的平方根,它们是互为相反数,0的平方根是0,负数没有平方根.
4、-5
【分析】
由题意直接根据立方根的性质即可进行分析求值.
【详解】
解:.
故答案为:.
【点睛】
本题考查立方根求值,熟练掌握立方根的性质是解题的关键.
5、6
【分析】
先求出小正方形面积=大正方形的面积减去4个长方形的面积,然后进行计算即可.
【详解】
解:由题意得:2(a+b)=18,ab=,
∴a+b=9,
∴(a﹣b)2
=(a+b)2﹣4ab
=81﹣45
=36,
又∵a>b,
∴a﹣b=6,
故答案为:6.
【点睛】
本题考查乘法公式的变形计算,平方根计算,掌握公式变形的方法用面积法,利用数形结合思想将问题简单化是解题关键
三、解答题
1、能,桌面长宽分别为28cm和21cm
【分析】
本题可设它的长为4x,则它的宽为3x,根据面积公式列出方程解答即可求出x的值,再代入长宽的表达式,看是否符合条件即可.
【详解】
能做到,理由如下:
设桌面的长和宽分别为4x(cm)和3x(cm),
根据题意得,4x×3x=588.
12x2=588.
(cm)
3x=3×7=21(cm).
∵面积为900cm2的正方形木板的边长为30cm,28cm<30cm,
∴能够裁出一个长方形面积为588cm2并且长宽之比为4∶3的桌面,
答:桌面长宽分别为28cm和21cm.
【点睛】
本题考察了算术平方根及列方程解应用题的知识点,读懂题意,找出等量关系列出方程是本题的关键点.
2、(1)3;1;(2);(3)的最大值为255
【详解】
解:(1)∵,
∴,
∴,
∴对10进行1次操作后变为3;
同理可得,
∴,
同理可得,
∴,
同理可得,
∴,
∴对200进行3次作后变为1,
故答案为:3;1;
(2)设m进行第一次操作后的数为x,
∵,
∴.
∴.
∴.
∵要经过两次操作.
∴.
∴.
∴.
故答案为:.
(3)设m经过第一次操作后的数为n,经过第二次操作后的数为x,
∵,
∴.
∴.
∴.
.
∴.
∵要经过3次操作,故.
∴.
∵是整数.
∴的最大值为255.
【点睛】
本题考查取整函数及无理数的估计,正确理解取整含义是求解本题的关键.
3、(1)x=±9;(2)x=4
【分析】
(1)方程利用平方根定义开方即可求出解;
(2)方程利用立方根定义开立方即可求出解.
【详解】
解:(1)开方得:x=±9;
(2)开立方得:x﹣1=3,
解得:x=4.
【点睛】
本题考查了利用平方根,立方根定义解方程,掌握平方根和立方根的定义是解题的关键.平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数),立方根:如果x3=a,则x叫做a的立方根,记作“”(a称为被开方数).
4、a+b的值为25+.
【分析】
由9π≈28.26,可得其整数部分a=28,由27<28<64,可求得的小数部分,继而可得a+b的值.
【详解】
解:∵9π≈28.26,
∴a=28,
∵27<28<64,
∴,
∴3<<4,
∴b=-3,
∴a+b=28+-3=25+,
∴a+b的值为25+.
【点睛】
本题主要考查了估算无理数的大小,根据题意估算出a,b的值是解答此题的关键.
5、
(1)-3
(2)-6x
(3)4y-3xz
【分析】
(1)先化简零指数幂,负整数指数幂,有理数的乘方,绝对值,然后再计算;
(2)先利用积的乘方运算法则计算乘方,然后利用整式乘除法运算法则从左往右依次计算.
(3)根据多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.
(1)
解:原式
;
(2)
解:原式
;
(3)
解:
.
【点睛】
本题考查整式的混合运算,负整数指数幂,零指数幂,掌握积的乘方(ab)n=anbn运算法则,整式的除法,理解a0=1(a≠0),(a≠0),牢记法则是解题关键.
6、9
【分析】
根据零指数幂,绝对值,负整数指数幂的性质和算术平方根分别计算,再将结果相加即可求解.
【详解】
解:原式
【点睛】
本题考查了零指数幂,绝对值,负整数指数幂的性质以及求一个数的算术平方根,熟练掌握这些性质,准确计算是解题关键.
7、x=5;y=2
【分析】
根据非负数的性质可得关于x、y的方程组,求解可得其值;
【详解】
解:由题意可得,
联立得 ,
解方程组得:,
∴x、y的值分别为5、2.
【点睛】
此题考查的是非负数的性质,解二元一次方程组,掌握绝对值及算术平方根的非负性是解决此题的关键.
8、1
【分析】
根据平方根与立方根可直接进行求解.
【详解】
解:原式.
【点睛】
本题主要考查平方根与立方根,熟练掌握平方根与立方根是解题的关键.
9、(1);(2)
【分析】
(1)根据平方根的定义计算即可;
(2)根据立方根的定义计算即可;
【详解】
解:(1)x2=25
x=±5.
(2)
x+1=,
x=.
【点睛】
本题主要考查平方根、立方根,熟练掌握平方根、立方根的定义是解决本题的关键.
10、(1);(2)
【分析】
(1)根据等式的性质和平方根的意义进行计算即可;
(2)根据等式的性质和立方根的意义进行计算即可.
【详解】
解:(1),
两边都除以4得,,
所以,;
(2),
两边都减1得,,
所以,,
解得,.
【点睛】
本题考查等式的性质、立方根、平方根的意义,解题的关键是掌握等式的性质、平方根、立方根的意义是正确解答的关键.
沪教版 (五四制)七年级下册第十二章 实数综合与测试测试题: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试测试题,共20页。试卷主要包含了4的平方根是,若 ,则,的值等于,下列各式正确的是.,0.64的平方根是,的算术平方根是等内容,欢迎下载使用。
沪教版 (五四制)七年级下册第十二章 实数综合与测试同步训练题: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试同步训练题,共22页。试卷主要包含了估算的值是在之间,对于两个有理数,若,则整数a的值不可能为,实数在哪两个连续整数之间,下列等式正确的是.等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后练习题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后练习题,共22页。试卷主要包含了规定一种新运算,对于两个有理数,已知a=,b=-|-|,c=,下列各式中正确的是,9的平方根是等内容,欢迎下载使用。

