沪教版 (五四制)七年级下册第十二章 实数综合与测试课时作业
展开沪教版(上海)七年级数学第二学期第十二章实数月考
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、的算术平方根是( )
A.2 B. C. D.
2、下列实数比较大小正确的是( )
A. B. C. D.
3、若与互为相反数,则a、b的值为( )
A. B. C. D.
4、下列各数中,最小的数是( )
A.0 B. C. D.﹣3
5、下列说法正确的是( )
A.的相反数是 B.2是4的平方根
C.是无理数 D.
6、实数﹣2的倒数是( )
A.2 B.﹣2 C. D.﹣
7、4的平方根是( )
A.±2 B.﹣2 C.2 D.4
8、a为有理数,定义运算符号▽:当a>-2时,▽a=-a;当a<-2时,▽a= a;当a=-2时,▽a= 0.根据这种运算,则▽[4+▽(2-5)]的值为( )
A. B.7 C. D.1
9、对于两个有理数、,定义一种新的运算:,若,则的值为( )
A. B. C. D.
10、实数在哪两个连续整数之间( )
A.3与4 B.4与5 C.5与6 D.12与13
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、设[x)表示大于x的最小整数,如[3)=4,[﹣1.2)=﹣1,
(1)[﹣3.9)=______.
(2)下列结论中正确的是______(填写所有正确结论的序号)
①[0)=0;
②[x)﹣x的最小值是0;
③[x)﹣x的最大值是1;
④存在实数x,使[x)﹣x=0.5成立.
2、已知的小数部分是a,的整数部分是b,则a+b=_________.
3、对于实数a,b,定义运算“*”如下:a*b=(a+b)2﹣(a﹣b)2.若(m+2)*(m﹣3)=24,则m的值为______.
4、当______ 时,分式的值为零
5、的平方根是______,______.
三、解答题(10小题,每小题5分,共计50分)
1、计算:
(1)
(2)
2、已知x,y满足,求x、y的值.
3、解方程:
(1)x2=25;
(2)8(x+1)3=125.
4、计算:(1);
(2).
5、计算
(1)
(2)
6、已知a2=16,b3=27,求ab的值.
7、计算:.
8、求下列各式中的x:
(1);
(2).
9、计算:
10、计算:.
-参考答案-
一、单选题
1、A
【分析】
根据算术平方根的定义即可求出结果.
【详解】
解:=4,4的算术平方根是2.
故选:A.
【点睛】
此题主要考查了算术平方根的定义.一个正数的算术平方根就是其正的平方根.
2、D
【分析】
根据有理数比较大小的法则对各选项进行比较即可.
【详解】
解:A、1>-4,故本选项错误;
B、-1000<-0.001,故本选项错误;
C、,故本选项错误;
D、,故本选项正确;
故选:D.
【点睛】
本题考查的是实数的大小比较,即正数都大于0;负数都小于0;正数大于一切负数; 两个负数,绝对值大的其值反而小.
3、D
【分析】
首先根据绝对值的性质和二次根式的性质得到,然后解方程组求解即可.
【详解】
解:∵与互为相反数,
∴+=0,
∴,
得:,
得:,解得:,
将代入①得:,解得:.
故选:D.
【点睛】
此题考查了绝对值的性质,二次根式的性质,相反数的性质以及解二元一次方程组等知识,解题的关键是根据题意得出关于a、b的方程组并求解.
4、C
【分析】
有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.
【详解】
解:,
所给的各数中,最小的数是.
故选:C.
【点睛】
本题主要考查了有理数大小比较的方法,解题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.
5、B
【分析】
根据立方根和平方根以及相反数和实数的定义进行判断即可得出答案.
【详解】
解:A. 负数没有平方根,故无意义,A错误;
B.,故2是4的平方根,B正确;
C.是有理数,故C错误;
D. ,故D错误;
故选B.
【点睛】
本题考查了相反数,平方根,立方根、实数的知识点,解题的关键是熟练掌握相反数,平方根,立方根的定义.
6、D
【分析】
根据倒数的定义即可求解.
【详解】
解:-2的倒数是﹣.
故选:D
【点睛】
本题考查了倒数的定义,熟知倒数的定义“乘积等于1的两个数互为倒数”是解题关键.
7、A
【分析】
根据平方根的定义,求数a的平方根,也就是求一个数x,使得,则x就是a的平方根.
【详解】
解:∵
∴4的平方根是,
故选:A.
【点睛】
本题主要考查平方根的定义,熟练掌握平方根的定义是解题的关键.
8、A
【分析】
定义运算符号▽:当a>-2时,▽a=-a;当a<-2时,▽a= a;当a=-2时,▽a= 0.先判断a的大小,然后按照题中的运算法则求解即可.
【详解】
解:且当时,▽a=a,
▽(-3)=-3,
4+▽(2-5)=4-3=1>-2,
当a>-2时,▽a=-a,
▽[4+▽(2-5)]=▽1=-1,
故选:A.
【点睛】
此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.
9、D
【分析】
根据新定义的运算法则得到,求解的值,再按照新定义对进行运算即可.
【详解】
解: ,
,
,
解得:
故选D
【点睛】
本题考查的是新定义运算,完全平方公式的应用,负整数指数幂的含义,理解新定义,按照新定义的运算法则进行运算是解本题的关键.
10、B
【分析】
估算即可得到结果.
【详解】
解:,
,
故选:B.
【点睛】
本题考查了估算无理数的大小,解题的关键是熟练掌握估算无理数的大小的法则.
二、填空题
1、-3; ③④
【分析】
(1)利用题中的新定义判断即可.
(2)根据题意[x)表示大于x的最小整数,结合各项进行判断即可得出答案.
【详解】
(1)表示大于-3.9的最小整数为-3,所以[﹣3.9)=-3
(2)解: ①[0)=1,故本项错误;
②[x)−x>0,但是取不到0,故本项错误;
③[x)−x⩽1,即最大值为1,故本项正确;
④存在实数x,使[x)−x=0.5成立,例如x=0.5时,故本项正确.
∴正确的选项是:③④;
故答案为:③④.
【点睛】
此题考查了实数的运算,理解新定义实数的运算法则是解本题的关键.
2、
【分析】
先分别求出和的范围,得到a、b的值,再代入a+b计算即可.
【详解】
∵2<<3,2<<3,
∴a=−2,b=2,
a+b=−2+2=,
故答案为.
【点睛】
本题考查了估算无理数的大小,利用夹值法估算出和的范围是解此题的关键.
3、或4
【分析】
先根据新运算的定义可得一个关于的方程,再利用平方根解方程即可得.
【详解】
解:由题意得:,即,
,
或,
解得或,
故答案为:或4.
【点睛】
本题考查了利用平方根解方程,掌握理解新运算的定义是解题关键.
4、
【分析】
由分式的值为0的条件可得:,再解方程与不等式即可得到答案.
【详解】
解: 分式的值为零,
由①得:
由②得:且
综上:
故答案为:
【点睛】
本题考查的是分式的值为0的条件,利用平方根解方程,掌握“分式的值为0的条件:分子为0,分母不为0”是解本题的关键.
5、±2 -8
【分析】
根据平方根的定义:如果对于一个数a和非负数b,有,那么a就叫做b的平方根;立方根的定义:对于c、d两个数,如果,那么c就叫做d的立方根,进行求解即可.
【详解】
解:∵,4的平方根为±2,
∴的平方根为±2,
,
故答案为:±2;-8.
【点睛】
本题主要考查了算术平方根,平方根和立方根,熟知相关定义是解题的关键.
三、解答题
1、(1)5;(2)
【分析】
(1)分别求解算术平方根与立方根,再进行加减运算即可;
(2)按照多项式除以单项式的法则:把多项式的每一项分别除以单项式,再把所得的商相加,从而可得答案.
【详解】
解:(1)
(2)
【点睛】
本题考查的是求解一个数的算术平方根与立方根,多项式除以单项式,掌握基础运算是解本题的关键.
2、x=5;y=2
【分析】
根据非负数的性质可得关于x、y的方程组,求解可得其值;
【详解】
解:由题意可得,
联立得 ,
解方程组得:,
∴x、y的值分别为5、2.
【点睛】
此题考查的是非负数的性质,解二元一次方程组,掌握绝对值及算术平方根的非负性是解决此题的关键.
3、(1);(2)
【分析】
(1)根据平方根的定义计算即可;
(2)根据立方根的定义计算即可;
【详解】
解:(1)x2=25
x=±5.
(2)
x+1=,
x=.
【点睛】
本题主要考查平方根、立方根,熟练掌握平方根、立方根的定义是解决本题的关键.
4、(1);(2).
【分析】
(1)由题意利用算术平方根和立方根的性质进行化简计算即可;
(2)由题意先去绝对值,进而进行算术平方根的加减运算即可.
【详解】
解:(1)
(2)
【点睛】
本题考查实数的运算,熟练掌握并利用算术平方根和立方根的性质进行化简是解题的关键.
5、(1);(2)
【分析】
(1)利用完全平方公式,平方差公式展开,合并同类项即可;
(2)根据幂的意义,算术平方根,立方根的定义计算.
【详解】
(1)
=
=;
(2)
=
=.
【点睛】
本题考查了完全平方公式,平方差公式,算术平方根即一个数的正的平方根,立方根如果一个数的立方等于a,则这个数叫做a的立方根;熟练掌握公式,正确理解算术平方根,立方根的定义是解题的关键.
6、64或﹣64
【分析】
根据平方根、立方根、有理数的乘方解决此题.
【详解】
解:∵a2=16,b3=27,
∴a=±4,b=3.
当a=4,b=3时,ab=43=64.
当a=﹣4,b=3时,ab=(﹣4)3=﹣64.
综上:ab=64或﹣64.
【点睛】
本题主要考查立方根、平方根及有理数的乘方运算,熟练掌握立方根、平方根及有理数的乘方运算是解题的关键.
7、7
【分析】
根据实数的性质化简即可求解.
【详解】
解:原式
【点睛】
此题主要考查实数的混合运算,解题的关键是熟知负指数幂的运算法则.
8、
(1)或
(2)
【分析】
(1)根据平方根定义开方,求出两个方程的解即可;
(2)先移项,再根据立方根定义得出一个一元一次方程,求出方程的解即可.
(1)
开平方得,
∴
解得,或
(2)
移项得,
方程两边同除以8,得,
开立方,得,
【点睛】
本题考查了平方根和立方根的应用,主要考查学生的理解能力和计算能力.
9、
【分析】
先运用零指数幂、负整数指数幂、乘方、绝对值化简原式,然后再计算即可.
【详解】
解:原式=1-8+4+
=.
【点睛】
本题考查了零指数幂、负整数指数幂、绝对值、实数的加减法等知识点,熟练掌握各运算法则是解答本题的关键.
10、
【分析】
根据有理数的乘方运算,有理数的乘方运算,化简绝对值,最后进行实数的混合运算即可
【详解】
解:原式.
【点睛】
本题考查了实数的混合运算,正确的计算是解题的关键.
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试随堂练习题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试随堂练习题,共21页。试卷主要包含了估算的值是在之间,在下列四个实数中,最大的数是,下列判断,4的平方根是,3的算术平方根为等内容,欢迎下载使用。
数学七年级下册第十二章 实数综合与测试课堂检测: 这是一份数学七年级下册第十二章 实数综合与测试课堂检测,共19页。试卷主要包含了16的平方根是,下列说法中正确的有,以下正方形的边长是无理数的是,下列各组数中相等的是,估计的值应该在.,9的平方根是等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后测评: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后测评,共22页。试卷主要包含了下列语句正确的是,下列各式中,化简结果正确的是,﹣π,﹣3,,的大小顺序是,下列各数中,比小的数是,在0.1010010001…等内容,欢迎下载使用。