![精品试题沪教版(上海)七年级数学第二学期第十二章实数章节测评试卷(含答案详解)01](http://img-preview.51jiaoxi.com/2/3/12707566/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试题沪教版(上海)七年级数学第二学期第十二章实数章节测评试卷(含答案详解)02](http://img-preview.51jiaoxi.com/2/3/12707566/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![精品试题沪教版(上海)七年级数学第二学期第十二章实数章节测评试卷(含答案详解)03](http://img-preview.51jiaoxi.com/2/3/12707566/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后测评
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、的值等于( )
A.B.-2C.D.2
2、一个正数的两个平方根分别是2a与,则a的值为( )
A.1B.﹣1C.2D.﹣2
3、下列说法不正确的是( )
A.0的平方根是0B.一个负数的立方根是一个负数
C.﹣8的立方根是﹣2D.8的算术平方根是2
4、下列语句正确的是( )
A.8的立方根是2B.﹣3是27的立方根
C.的立方根是±D.(﹣1)2的立方根是﹣1
5、在实数,,,,,,,1.12112111211112…(每两 个2之间依次多一个1)中,无理数有( )个
A.2B.3C.4D.5
6、下列各式中,化简结果正确的是( )
A.B.C.D.
7、﹣π,﹣3,,的大小顺序是( )
A.B.
C.D.
8、下列各数中,比小的数是( )
A.B.-C.D.
9、在0.1010010001…(相邻两个1之间依次多一个0),,,中,无理数有( )
A.1个B.2个C.3个D.4个
10、在,, 0, , , 0.010010001……, , -0.333…, , 3.1415,2.010101…(相邻两个1之间有1个0)中,无理数有( )
A.2个B.3个C.4个D.5个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、比较大小:_____﹣(填“<”或“=”或“>”).
2、比较大小: _____ (填“<”或“>”符号)
3、设[x)表示大于x的最小整数,如[3)=4,[﹣1.2)=﹣1,
(1)[﹣3.9)=______.
(2)下列结论中正确的是______(填写所有正确结论的序号)
①[0)=0;
②[x)﹣x的最小值是0;
③[x)﹣x的最大值是1;
④存在实数x,使[x)﹣x=0.5成立.
4、x、y表示两个数,规定新运算“*”如下:x*y=2x﹣3y,那么(3*5)*(﹣4)=_____.
5、计算:______.
三、解答题(10小题,每小题5分,共计50分)
1、计算题:
(1);
(2).
2、解答下列各题:
(1)计算:
①
②
(2)分解因式:
3、如图1,依次连接2×2方格四条边的中点,得到一个阴影正方形,设每一方格的边长为1个单位,则这个阴影正方形的边长为.
(1)图1中阴影正方形的边长为 ;点P表示的实数为 ;
(2)如图2,在4×4方格中阴影正方形的边长为a.
①写出边长a的值.
②请仿照(1)中的作图在数轴上表示实数﹣a+1.
4、(1)计算:;
(2)计算:(﹣2x2)2+x3•x﹣x5÷x;
(3)先化简再求值:2(a+2)2﹣4(a+3)(a﹣3)+3(a﹣1)2,其中a=﹣1.
5、现有两种给你钱的方法:第一种方法是每天给你1元,一直给你10年;第二种方法是第一天给你1分钱,第2天给你2分钱,第3天给你4分钱,第4天给你8分钱,第5天给你16分钱,以此类推,给你20天.哪一种方法得到的钱数多?请说明理由.(1年按365天计算)
6、计算:
(1)18+(﹣17)+7+(﹣8);
(2)×(﹣12);
(3)﹣22+|﹣1|+.
7、如图:在数轴上A点表示数a,B点表示数b,C点表示数c,且a,b满足|a+3|+(b﹣9)2=0,c=1.
(1)a= ,b= ;
(2)点P为数轴上一动点,其对应的数为x,则当x 时,代数式|x﹣a|﹣|x﹣b|取得最大值,最大值为 ;
(3)点P从点A处以1个单位/秒的速度向左运动;同时点Q从点B处以2个单位/秒的速度也向左运动,在点Q到达点C后,以原来的速度向相反的方向运动,设运动的时间为t(t≤8)秒,求第几秒时,点P、Q之间的距离是点B、Q之问距离的2倍?
8、计算
9、求下列各式中的值:
(1); (2).
10、计算:
-参考答案-
一、单选题
1、D
【分析】
由于表示4的算术平方根,由此即可得到结果.
【详解】
解:∵4的算术平方根为2,
∴的值为2.
故选D.
【点睛】
此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.弄清概念是解决本题的关键.
2、D
【分析】
根据正数有两个平方根,且互为相反数,即可求解.
【详解】
解:根据题意得: ,
解得: .
故选:D
【点睛】
本题主要考查了平方根的性质,熟练掌握正数有两个平方根,且互为相反数;0的平方根为0;负数没有平方根是解题的关键.
3、D
【分析】
直接利用算术平方根、平方根、立方根的定义分析得出答案.
【详解】
解:A、0的平方根是0,原说法正确,故此选项不符合题意;
B、一个负数的立方根是一个负数,原说法正确,故此选项不符合题意;
C、﹣8的立方根是﹣2,原说法正确,故此选项不符合题意;
D、8的算术平方根是2,原说法不正确,故此选项符合题意;
故选:D.
【点睛】
此题主要考查了算术平方根、平方根、立方根,熟练掌握算术平方根、平方根、立方根的定义是解题的关键.
4、A
【分析】
利用立方根的运算法则,进行判断分析即可.
【详解】
解:A、8的立方根是2,故A正确.
B、3是27的立方根,故B错误.
C、的立方根是,故C错误.
D、(﹣1)2的立方根是1,故D错误.
故选:A.
【点睛】
本题主要是考查了立方根的运算,注意一个数的立方根只有一个,不是以相反数形式存在的.
5、C
【分析】
利用无理数的定义:无限不循环小数称为无理数,进行判断即可,但同时也要掌握有理数的定义:整数和分数统称为有理数.
【详解】
有理数有:,,,,一共四个.
无理数有:,,,1.12112111211112…(每两 个2之间依次多一个1),一共四个.
故选:C.
【点睛】
此题主要是考察了无理数的定义,初中数学中常见的无理数主要是:,等;开方开不尽的数;以及像1.12112111211112…,等有规律的数.
6、D
【分析】
根据实数的运算法则依次对选项化简再判断即可.
【详解】
A、,化简结果错误,与题意不符,故错误.
B、,化简结果错误,与题意不符,故错误.
C、,化简结果错误,与题意不符,故错误.
D、,化简结果正确,与题意相符,故正确.
故选:D .
【点睛】
本题考查了实数的运算,解题的关键是熟练掌握实数的混合运算法则.
7、B
【分析】
根据实数的大小比较法则即可得.
【详解】
解:,
,
,
则,
故选:B.
【点睛】
本题考查了实数的大小比较,熟练掌握实数的大小比较法则是解题关键.
8、A
【分析】
直接利用任何正数都大于0以及结合估算无理数大小的方法,进而得出答案.
【详解】
解:A. <-3,故A正确;
B. ->-3,故B错误;
C. >-3,故C错误;
D. >-3,故D错误.
故选A.
【点睛】
此题主要考查了实数比较大小,正确估算出无理数的大小是解题关键.
9、B
【分析】
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【详解】
解:0.1010010001…(相邻两个1之间依次多一个0),是无限不循环小数,是无理数;
是有理数;
是有理数;
是无理数;
∴无理数有2个,
故选B.
【点睛】
本题主要考查了无理数的定义,解题的关键在于能够熟练掌握有理数和无理数的定义.
10、C
【分析】
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【详解】
解:=1,=2,,3,
∴无理数有,,,2.010101…(相邻两个1之间有1个0)共4个.
故选:C.
【点睛】
此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
二、填空题
1、>
【分析】
先求解两个实数的绝对值,再利用近似值比较它们绝对值的大小,利用两个负数绝对值大的反而小可得答案.
【详解】
解: 而
故答案为:>
【点睛】
本题考查的是实数的大小比较,掌握“两个负实数的大小比较的方法”是解本题的关键.
2、>
【分析】
根据实数比较大小的方法判断即可.
【详解】
∵正数大于一切负数,
∴ ,
故答案为:>.
【点睛】
此题主要考查实数的大小比较,熟练掌握实数比较大小的方法是解题的关键.
3、-3; ③④
【分析】
(1)利用题中的新定义判断即可.
(2)根据题意[x)表示大于x的最小整数,结合各项进行判断即可得出答案.
【详解】
(1)表示大于-3.9的最小整数为-3,所以[﹣3.9)=-3
(2)解: ①[0)=1,故本项错误;
②[x)−x>0,但是取不到0,故本项错误;
③[x)−x⩽1,即最大值为1,故本项正确;
④存在实数x,使[x)−x=0.5成立,例如x=0.5时,故本项正确.
∴正确的选项是:③④;
故答案为:③④.
【点睛】
此题考查了实数的运算,理解新定义实数的运算法则是解本题的关键.
4、-6
【分析】
根据找出新的运算方法,再根据新的运算方法计算即可.
【详解】
故答案为:
【点睛】
本题考查了新定义下的实数运算,解题关键是根据题目给出的式子,找出新的运算方法,再根据新的运算方法计算要求的式子.
5、-5
【分析】
由题意直接根据立方根的性质即可进行分析求值.
【详解】
解:.
故答案为:.
【点睛】
本题考查立方根求值,熟练掌握立方根的性质是解题的关键.
三、解答题
1、
(1)
(2)
【分析】
(1)先用同底数幂、幂的乘方、积的乘方运算,然后再合并即可;
(2)先运用算术平方根、负整数次幂、绝对值、零次幂的知识化简各数,然后再计算即可.
(1)
解:原式=
(2)
解:原式=
【点睛】
本题主要考查了整式的运算、实数的运算等知识点,灵活运用相关运算法则成为解答本题的关键.
2、(1)①;②;(2)
【分析】
(1)①原式利用算术平方根、立方根性质,乘方的意义,以及绝对值的代数意义计算即可得到结果;②根据幂的乘方与积的乘方以及同底数幂的乘法法则进行计算,再进行合并同类项合并即可;
(2)原式提取公因式x,再利用完全平方公式分解即可.
【详解】
解:(1)①
②
(2)
【点睛】
此题考查了实数的运算、整式的乘除运算以及提公因式法与公式法的综合运用的知识点,熟练掌运算以及相关法则、方法是解本题的关键.
3、(1),1+;(2)①;②见解析
【分析】
(1)先利用大正方形的面积减去四个三角形的面积可得正方形ABCD的面积,再求其算术平方根即可得;
(2)①先利用大正方形的面积减去四个三角形的面积可得阴影部分正方形的面积,再求其算术平方根即可得;
②由数轴上表示1的点为圆心画弧,与数轴负半轴的交点表示的数即为.
【详解】
解:(1)正方形ABCD的面积为:,
正方形ABCD的边长为:,
,
,
由题意得:点表示的实数为:,
故答案为:,;
(2)①阴影部分正方形面积为:,
求其算术平方根可得:,
②如图所示:
点表示的数即为.
【点睛】
本题考查了割补法求面积以及实数与数轴等知识,熟练掌握割补法求面积是解题的关键.
4、(1)8﹣;(2)4x4;(3)a2+2a+47,46
【分析】
(1)首先根据算术平方根,立方根和绝对值的性质化简,然后利用有理数的加减混合运算法则求解即可;
(2)先算乘方,再算乘除,然后合并同类项求解即可;
(3)先根据整式的乘法运算法则化简,然后合并同类项,最后代入求解即可.
【详解】
解:(1)原式=9﹣2﹣(﹣1)
=7﹣+1
=8﹣;
(2)原式=4x4+x4﹣x4
=4x4;
(3)原式=2(a2+4a+4)﹣4(a2﹣9)+3(a2﹣2a+1)
=2a2+8a+8﹣4a2+36+3a2﹣6a+3
=a2+2a+47,
当a=﹣1时,
原式=(﹣1)2+2×(﹣1)+47
=1﹣2+47
=46.
【点睛】
此题考查了算数平方根,立方根和绝对值的意义,积的乘方运算,同底数幂的乘法和除法运算,整式的乘法运算公式,合并同类项等知识,解题的关键是熟练掌握以上运算的法则.
5、第二种,理由见解析
【分析】
根据题意,先计算第一种方法给的钱数,即每天的钱数乘以天数;再计算第二种方法给的钱数,但要总结规律可得第n天可得2n-1元钱.即可得总数,然后比较大小即可知哪种方案得到的多.
【详解】
解:第一种方法:1×10×365=3650元
第二种方法:1+2+22+23+24+…+219=220-1=1048575分=10485.75元
∵10485.75>3650
∴第二种方法得到的钱多.
【点睛】
本题考查了数字的规律,以及有理数的混合运算,涉及到比较数的大小.考查了找数字的规律的问题,做此类问题,需要认真审题,找出规律,从特殊到一般,归纳总结规律,是解决此类问题的关键所在.
6、(1)0;(2)1;(3)
【分析】
(1)根据有理数的加法计算法则求解即可;
(2)根据有理数的乘法分配律求解即可;
(3)根据有理数的乘方,绝对值和算术平方根的计算法则求解即可.
【详解】
解:(1)
;
(2)
;
(3)
.
【点睛】
本题主要考查了有理数乘法的分配律,有理数的加减,有理数的乘方,化简绝对值,算术平方根,熟知相关计算法则是解题的关键.
7、(1)﹣3,9;(2)≥9,12;(3)秒或秒.
【分析】
(1)由|a+3|+(b﹣9)2=0,根据非负数的性质得|a+3|=0,(b﹣9)2=0,即可求出a=﹣3、b=9;
(2)由(1)得a=﹣3、b=9,则代数式|x﹣a|﹣|x﹣b|即代数式|x+3|﹣|x﹣9|,按x<﹣3、﹣3≤x<9及x≥9分类讨论,分别求出相应的代数式的值或范围,再确定代数式的最大值;
(3)先由点C表示的数是1,点B表示的数是9,计算出B、C两点之间的距离,确定t的取值范围,再按t的不同取值范围分别求出相应的t的值即可.
【详解】
解:(1)∵|a+3|≥0,(b﹣9)2≥0,且|a+3|+(b﹣9)2=0,
∴|a+3|=0,(b﹣9)2=0,
∴a=﹣3,b=9,
故答案为:﹣3,9.
(2)∵a=﹣3,b=9,
∴代数式|x﹣a|﹣|x﹣b|即代数式|x+3|﹣|x﹣9|,
当x<﹣3时,|x+3|﹣|x﹣9|=﹣(x+3)﹣(9﹣x)=﹣12;
当﹣3≤x<9时,|x+3|﹣|x﹣9|=x+3﹣(9﹣x)=2x﹣6,
∵﹣12≤2x﹣6<12,
∴﹣12≤|x+3|﹣|x﹣9|<12;
当x≥9时,|x+3|﹣|x﹣9|=x+3﹣(x﹣9)=12,
综上所述,|x+3|﹣|x﹣9|的最大值为12,
故答案为:≥9,12.
(3)∵点C表示的数是1,点B表示的数是9,
∴B、C两点之间的距离是9﹣1=8,
当点Q与点C重合时,则2t=8,
解得t=4,
当0<t≤4时,如图1,点P表示的数是﹣3﹣t,点Q表示的数是9﹣2t,
根据题意得9﹣2t﹣(﹣3﹣t)=2×2t,
解得t=;
当4<t≤8时,如图2,点P表示的数仍是﹣3﹣t,
∵1+(2t﹣8)=2t﹣7,
∴点Q表示的数是2t﹣7,
根据题意得2t﹣7﹣(﹣3﹣t)=2(16﹣2t),
解得t=,
综上所述,第秒或第秒,点P、Q之间的距离是点B、Q之间距离的2倍.
【点睛】
本题考查数轴、数轴上两点间的距离,一元一次方程的应用、绝对值的几何意义等知识,是重要考点,难度一般,掌握相关知识是解题关键.
8、
【分析】
根据立方根,算术平方根,绝对值的计算法则进行求解即可.
【详解】
解:
.
【点睛】
本题主要考查了实数的运算,解题的关键在于能够熟练掌握求立方根,算术平方根,绝对值的计算法则.
9、(1);(2)
【分析】
(1)把原方程化为,再利用立方根的含义解方程即可;
(2)直接利用平方根的含义把原方程化为或,再解两个一次方程即可.
【详解】
解:(1)
解得:
(2)
或
解得:
【点睛】
本题考查的是利用立方根的含义与平方根的含义解方程,掌握“立方根与平方根的含义”是解本题的关键.
10、
【分析】
先运用零指数幂、负整数指数幂、乘方、绝对值化简原式,然后再计算即可.
【详解】
解:原式=1-8+4+
=.
【点睛】
本题考查了零指数幂、负整数指数幂、绝对值、实数的加减法等知识点,熟练掌握各运算法则是解答本题的关键.
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试随堂练习题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试随堂练习题,共19页。试卷主要包含了下列判断中,你认为正确的是,在下列各数,下列等式正确的是.,9的平方根是,10的算术平方根是等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后复习题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后复习题,共19页。试卷主要包含了若,则的值为,下列实数比较大小正确的是,下列说法正确的是,以下正方形的边长是无理数的是等内容,欢迎下载使用。
沪教版 (五四制)七年级下册第十二章 实数综合与测试课后复习题: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试课后复习题,共18页。试卷主要包含了3的算术平方根为,下列四个数中,最小的数是,下列说法正确的是,下列说法不正确的是等内容,欢迎下载使用。