沪教版 (五四制)七年级下册第十二章 实数综合与测试随堂练习题
展开沪教版(上海)七年级数学第二学期第十二章实数专项测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、点A在数轴上的位置如图所示,则点A表示的数可能是( )
A. B. C. D.
2、64的立方根为( ).
A.2 B.4 C.8 D.-2
3、在下列四个实数中,最大的数是( )
A.0 B.﹣2 C.2 D.
4、的算术平方根是( )
A. B. C. D.
5、下列说法正确的是( )
A.的相反数是 B.2是4的平方根
C.是无理数 D.
6、下列四个数中,最小的数是( )
A.﹣3 B.﹣ C.0 D.﹣π
7、化简计算﹣的结果是( )
A.12 B.4 C.﹣4 D.﹣12
8、下列说法正确的是( )
A.是的平方根 B.是的算术平方根 C.2是-4的算术平方根 D.的平方根是它本身
9、的算术平方根是( )
A.2 B. C. D.
10、4的平方根是( )
A.2 B.﹣2 C.±2 D.没有平方根
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知,则|x﹣3|+|x﹣1|=___.
2、0.064的立方根是______.
3、下列各数:-1、、、,0.1010010001…(相邻两个1之间0的个数增加1),其中无理数的个数是______.
4、计算:__________.
5、计算:_______.
三、解答题(10小题,每小题5分,共计50分)
1、计算题:
(1);
(2).
2、计算
(1)
(2)
3、计算
4、已知x,y满足,求x、y的值.
5、计算:.
6、计算下列各题:
(1);
(2).
(3).
7、(1)计算:﹣32﹣(2021)0+|﹣2|﹣()﹣2×(﹣);
(2)解方程:=﹣1.
8、已知a2=16,b3=27,求ab的值.
9、(1)计算:;
(2)求式中的x:(x+4)2=81.
10、计算:.
-参考答案-
一、单选题
1、A
【分析】
根据数轴上表示的数在4至4.5之间,再估算各选项的取值,即可得解.
【详解】
解:观察得到点A表示的数在4至4.5之间,
A、∵16<18<20.25,∴4<<4.5,故该选项符合题意;
B、∵9<10<16,∴3<<4,故该选项不符合题意;
C、∵20.25<24<25,∴4.5<<5,故该选项不符合题意;
D、∵25<30<36,∴5<<6,故该选项不符合题意;
故选:A.
【点睛】
本题考查了实数与数轴,无理数的估算,根据数形结合的思想观察数轴确定点的位置是解题的关键.
2、B
【分析】
根据立方根的定义进行计算即可.
【详解】
解:∵43=64,
∴实数64的立方根是,
故选:B.
【点睛】
本题考查立方根,理解立方根的定义是正确解答的关键.
3、C
【分析】
先根据正数大于0,0大于负数,排除,,然后再用平方法比较2与即可.
【详解】
解:正数,负数,
排除,,
,,
,
,
最大的数是2,
故选:.
【点睛】
本题考查了实数的大小比较,算术平方根,熟练掌握用平方法来比较大小是解题的关键.
4、A
【分析】
根据算术平方根的定义即可完成.
【详解】
∵
∴的算术平方根是
即
故选:A
【点睛】
本题考查了算术平方根的计算,掌握算术平方根的定义是关键.
5、B
【分析】
根据立方根和平方根以及相反数和实数的定义进行判断即可得出答案.
【详解】
解:A. 负数没有平方根,故无意义,A错误;
B.,故2是4的平方根,B正确;
C.是有理数,故C错误;
D. ,故D错误;
故选B.
【点睛】
本题考查了相反数,平方根,立方根、实数的知识点,解题的关键是熟练掌握相反数,平方根,立方根的定义.
6、D
【分析】
正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断出各数中最小的是哪个即可.
【详解】
解:∵,,,,
∴,
∴最小的数是,
故选D.
【点睛】
此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.
7、B
【分析】
根据算术平方根和立方根的计算法则进行求解即可.
【详解】
解:,
故选B.
【点睛】
本题主要考查了求算术平方根和立方根,解题的关键在于能够熟练掌握立方根和算术平方根的求解方法.
8、A
【分析】
根据平方根的定义及算术平方根的定义解答.
【详解】
解:A、是的平方根,故该项符合题意;
B、4是的算术平方根,故该项不符合题意;
C、2是4的算术平方根,故该项不符合题意;
D、1的平方根是,故该项不符合题意;
故选:A.
【点睛】
此题考查了平方根的定义及算术平方根的定义,熟记定义是解题的关键.
9、A
【分析】
根据算术平方根的定义即可求出结果.
【详解】
解:=4,4的算术平方根是2.
故选:A.
【点睛】
此题主要考查了算术平方根的定义.一个正数的算术平方根就是其正的平方根.
10、C
【分析】
根据平方根的定义(如果一个数x的平方等于a,那么这个数x就叫做a的平方根)和性质(一个正数有两个实平方根,它们互为相反数)直接得出即可.
【详解】
解:4的平方根,
即:,
故选:C.
【点睛】
题目主要考查平方根的定义和性质,熟练掌握其性质及求法是解题关键.
二、填空题
1、2
【分析】
得出x-3<0,x-1>0,再利用绝对值的代数意义去括号合并即可得到结果.
【详解】
解:∵,1<<2,2<<3,
∴x-3<0,x-1>0,
∴|x﹣3|+|x-1|
=3-x+(x-1)
=3-x+x-1
=2.
故答案为:2.
【点睛】
本题考查了整式的加减运算,涉及的知识有:无理数的估算,绝对值的代数意义,数轴,去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.
2、0.4
【分析】
根据立方根的定义直接求解即可.
【详解】
解:∵,
∴0.064的立方根是0.4.
故答案为:0.4.
【点睛】
本题考查了立方根,解决本题的关键是熟记立方根的定义.
3、3
【分析】
无理数就是无限不循环小数;有理数是整数与分数的统称,即有限小数和无限循环小数是有理数,由此即可判定.
【详解】
在-1、、、,0.1010010001…(相邻两个1之间0的个数增加1)中,
无理数有,,0.1010010001…(相邻两个1之间0的个数增加1)共3个.
故答案为:3.
【点睛】
本题考查了实数的分类,理解有理数与无理数的概念是解题的关键.
4、3
【分析】
根据实数的运算法则即可求出答案.
【详解】
解:原式.
【点睛】
本题考查了实数的运算法则,掌握负整指数幂,零指数幂的运算性质是解本题的关键.
5、1
【分析】
根据算术平方根的计算方法求解即可.
【详解】
解:.
故答案为:1.
【点睛】
此题考查了求解算术平方根,解题的关键是熟练掌握算术平方根的计算方法.
三、解答题
1、
(1)
(2)
【分析】
(1)先用同底数幂、幂的乘方、积的乘方运算,然后再合并即可;
(2)先运用算术平方根、负整数次幂、绝对值、零次幂的知识化简各数,然后再计算即可.
(1)
解:原式=
(2)
解:原式=
【点睛】
本题主要考查了整式的运算、实数的运算等知识点,灵活运用相关运算法则成为解答本题的关键.
2、
(1)-2
(2)1
【分析】
(1)先分别计算开平方和开立方,再进行有理数的加、减混合计算即可;
(2)先去绝对值,去括号,再进行实数的加、减混合计算即可;
(1)
解:
;
(2)
解:
.
【点睛】
本题考查实数的混合运算.掌握运算方法与运算顺序是解出本题的关键.
3、
【分析】
直接根据有理数的乘方,算术平方根,立方根以及绝对值的性质化简各项,再进行加减运算得出答案.
【详解】
解:
=
=
【点睛】
本题主要考查了实数的运算,正确化简各数是解题的关键.
4、x=5;y=2
【分析】
根据非负数的性质可得关于x、y的方程组,求解可得其值;
【详解】
解:由题意可得,
联立得 ,
解方程组得:,
∴x、y的值分别为5、2.
【点睛】
此题考查的是非负数的性质,解二元一次方程组,掌握绝对值及算术平方根的非负性是解决此题的关键.
5、1
【分析】
分别根据数的开方法则、0指数幂及负整数指数幂的计算法则计算出各数,再进行加减运算即可.
【详解】
解:
【点睛】
本题考查的是实数的运算,熟知数的开方法则、0指数幂及负整数指数幂的计算法则是解答此题的关键.
6、
(1)-3
(2)-6x
(3)4y-3xz
【分析】
(1)先化简零指数幂,负整数指数幂,有理数的乘方,绝对值,然后再计算;
(2)先利用积的乘方运算法则计算乘方,然后利用整式乘除法运算法则从左往右依次计算.
(3)根据多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.
(1)
解:原式
;
(2)
解:原式
;
(3)
解:
.
【点睛】
本题考查整式的混合运算,负整数指数幂,零指数幂,掌握积的乘方(ab)n=anbn运算法则,整式的除法,理解a0=1(a≠0),(a≠0),牢记法则是解题关键.
7、(1)-7;(2)x=9.
【分析】
(1)直接利用绝对值的性质、零指数幂的性质、负整数指数幂的性质分别化简得出答案;
(2)直接去分母,移项合并同类项解方程即可.
【详解】
解:(1)原式=﹣9﹣1+2﹣9×(﹣)
=﹣9﹣1+2+1
=﹣7;
(2)去分母得:2x﹣3(1+x)=﹣12,
去括号得:2x﹣3﹣3x=﹣12,
移项得:2x﹣3x=﹣12+3,
合并同类项得:﹣x=﹣9,
系数化1得:x=9.
【点睛】
此题主要考查了实数运算以及一元一次方程的解法,正确掌握相关运算法则是解题关键.
8、64或﹣64
【分析】
根据平方根、立方根、有理数的乘方解决此题.
【详解】
解:∵a2=16,b3=27,
∴a=±4,b=3.
当a=4,b=3时,ab=43=64.
当a=﹣4,b=3时,ab=(﹣4)3=﹣64.
综上:ab=64或﹣64.
【点睛】
本题主要考查立方根、平方根及有理数的乘方运算,熟练掌握立方根、平方根及有理数的乘方运算是解题的关键.
9、(1);(2)或
【分析】
(1)分别计算算术平方根、立方根、绝对值,再进行加减即可;
(2)根据平方根的意义,计算出x的值.
【详解】
解:(1)原式
;
(2)由平方根的意义得:
或
∴或.
【点睛】
本题考查了平方根意义和实数的运算.题目难度不大,掌握平方根、立方根、绝对值的意义是解决本题的关键.
10、2﹣π.
【分析】
根据题意利用算术平方根性质和去绝对值以及乘方运算先化简各式,然后再进行计算.
【详解】
解:
=3﹣(π﹣)+(﹣1)﹣
=3﹣π+﹣1﹣
=2﹣π.
【点睛】
本题考查含乘方和算术平方根的实数运算,熟练掌握利用算术平方根性质和去绝对值以及乘方运算法则进行化简是解题的关键.
初中数学第十二章 实数综合与测试当堂达标检测题: 这是一份初中数学第十二章 实数综合与测试当堂达标检测题,共20页。试卷主要包含了4的平方根是,下列说法正确的是等内容,欢迎下载使用。
数学第十二章 实数综合与测试同步练习题: 这是一份数学第十二章 实数综合与测试同步练习题,共22页。试卷主要包含了下列说法正确的是,实数﹣2的倒数是,下列语句正确的是,下列说法中正确的有等内容,欢迎下载使用。
沪教版 (五四制)七年级下册第十二章 实数综合与测试课时作业: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试课时作业,共19页。试卷主要包含了的算术平方根是,实数在哪两个连续整数之间,三个实数,2,之间的大小关系,计算2﹣1+30=,估计的值应该在.等内容,欢迎下载使用。