


初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课后复习题
展开沪教版(上海)七年级数学第二学期第十二章实数专题训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、10的算术平方根是( )
A.10 B. C. D.
2、若与互为相反数,则a、b的值为( )
A. B. C. D.
3、若,则的值为( )
A. B. C. D.或
4、4的平方根是( )
A.±2 B.﹣2 C.2 D.4
5、化简计算﹣的结果是( )
A.12 B.4 C.﹣4 D.﹣12
6、点A在数轴上的位置如图所示,则点A表示的数可能是( )
A. B. C. D.
7、在下列各数:、0.2、﹣π、、、0.101001中有理数的个数是( )
A.1 B.2 C.3 D.4
8、在实数,,,,,,,0.1010010001…(相邻两个1中间依次多1个0)中,无理数有( ).
A.2个 B.3个 C.4个 D.5个
9、如图,数轴上的点A,B,O,C,D分别表示数,,0,1,2,则表示数的点P应落在( ).
A.线段AB上 B.线段BO上 C.线段OC上 D.线段CD上
10、在﹣3,0,2,这组数中,最小的数是( )
A. B.﹣3 C.0 D.2
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、比较大小:____+1.(填“>”、“<”或“=”).
2、已知在两个连续的整数和之间,则的平方根为______.
3、如图,正方形ABCD是由四个长都为a,宽都为b(a>b)的小长方形拼接围成的.已知每个小长方形的周长为18,面积为,我们可以通过计算正方形ABCD面积的方法求出代数式a﹣b的值,则这个值为 _____.
4、的平方根是__.
5、对于实数a,b,且(a≠b),我们用符号min{a,b}表示a,b两数中较小的数,例如:min(1,﹣2)=﹣2.
(1)min(﹣,﹣)=_____;
(2)已知min(,a)=a,min(,b)=,若a和b为两个连续正整数,则a+b=_____.
三、解答题(10小题,每小题5分,共计50分)
1、有理数a,b如果满足,那么我们定义a,b为一组团结数对,记为<a,b>.例如:和,因为,所以,则称和为一组团结数对,记为<>.
根据以上定义完成下列各题:
(1)找出2和2,1和3,-2和这三组数中的团结数对,记为 ;
(2)若<5,x>成立,则x的值为 ;
(3)若<a,b>成立,b为按一定规律排列成1,-3,9,-27,81,-243,……这列数中的一个,且b与b左右两个相邻数的和是567,求a的值.
2、计算:
3、计算:.
4、已知a,b互为相反数,c,d互为倒数,x的立方等于﹣8,求3(a+b)+cd+x的值.
5、求下列各式的值:
(1)
(2)
(3)
6、已知x,y满足,求x、y的值.
7、阅读下面材料,并按要求完成相应问题:
定义:如果一个数的平方等于-1,记为,这个数叫做虚数单位,把形如的数叫做复数,其中是这个复数的实部,是这个复数的虚部.它的加﹑减﹑乘法运算与整式的加﹑减﹑乘法运算类似.
例如:
应用:
(1)计算
(2)如果正整数a、b满足,求a、b的值.
(3)将化为(均为实数)的形式,(即化为分母中不含的形式).
8、运算,满足
(1)求的值;
(2)求的值.
9、计算:.
10、阅读下面的文字,解答问题.
现规定:分别用和表示实数x的整数部分和小数部分,如实数3.14的整数部分是,小数部分是;实数的整数部分是,小数部分是无限不循环小数,无法写完整,但是把它的整数部分减去,就等于它的小数部分,即就是的小数部分,所以.
(1) , ; , .
(2)如果,,求的立方根.
-参考答案-
一、单选题
1、B
【分析】
直接利用算术平方根的求法即可求解.
【详解】
解:的算术平方根是,
故选:B.
【点睛】
本题主要考查了算术平方根,解题的关键是掌握求解的运算法则.
2、D
【分析】
首先根据绝对值的性质和二次根式的性质得到,然后解方程组求解即可.
【详解】
解:∵与互为相反数,
∴+=0,
∴,
得:,
得:,解得:,
将代入①得:,解得:.
故选:D.
【点睛】
此题考查了绝对值的性质,二次根式的性质,相反数的性质以及解二元一次方程组等知识,解题的关键是根据题意得出关于a、b的方程组并求解.
3、C
【分析】
化简后利用平方根的定义求解即可.
【详解】
解:∵,
∴x2-9=55,
∴x2=64,
∴x=±8,
故选C.
【点睛】
本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,正数有两个不同的平方根,它们是互为相反数,0的平方根是0,负数没有平方根.
4、A
【分析】
根据平方根的定义,求数a的平方根,也就是求一个数x,使得,则x就是a的平方根.
【详解】
解:∵
∴4的平方根是,
故选:A.
【点睛】
本题主要考查平方根的定义,熟练掌握平方根的定义是解题的关键.
5、B
【分析】
根据算术平方根和立方根的计算法则进行求解即可.
【详解】
解:,
故选B.
【点睛】
本题主要考查了求算术平方根和立方根,解题的关键在于能够熟练掌握立方根和算术平方根的求解方法.
6、A
【分析】
根据数轴上表示的数在4至4.5之间,再估算各选项的取值,即可得解.
【详解】
解:观察得到点A表示的数在4至4.5之间,
A、∵16<18<20.25,∴4<<4.5,故该选项符合题意;
B、∵9<10<16,∴3<<4,故该选项不符合题意;
C、∵20.25<24<25,∴4.5<<5,故该选项不符合题意;
D、∵25<30<36,∴5<<6,故该选项不符合题意;
故选:A.
【点睛】
本题考查了实数与数轴,无理数的估算,根据数形结合的思想观察数轴确定点的位置是解题的关键.
7、D
【分析】
有理数是整数与分数的统称,或者说有限小数与无限循环小数都是有理数,据此求解.
【详解】
解:,,
∴在、0.2、-π、、、0.101001中,有理数有0.2、、、0.101001,共有4个.
故选:D.
【点睛】
本题考查有理数的意义,掌握有理数的意义是正确判断的前提.
8、D
【分析】
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【详解】
解:是有理数,
是无限循环小数,是有理数,
是分数,是有理数,
,,,,0.1010010001…(相邻两个1中间依次多1个0)是无理数,共个,
故选:D.
【点睛】
此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
9、B
【分析】
根据,得到,根据数轴与实数的关系解答.
【详解】
解:∵,
∴,
∴,
∴,
∴表示的点在线段BO上,
故选:B.
【点睛】
本题考查了无理数的估算,实数与数轴,正确估算无理数的大小是解本题的关键.
10、B
【分析】
先确定3与的大小,再确定四个数的大小顺序,由此得到答案.
【详解】
解:∵9>7,
∴3>,
∴-3<,
∴-3<<0<2,
故选:B.
【点睛】
此题考查了实数的估值,实数的大小比较,正确掌握实数的估值计算是解题的关键.
二、填空题
1、<
【分析】
根据1<<2、1<<2解答即可.
【详解】
解:∵1<<2,1<<2,
∴2<+1<3,
∴<+1,
故答案为:<.
【点睛】
本题考查无理数的估算、实数的大小比较,熟练掌握无理数的估算是解答的关键.
2、
【分析】
先判断,得到和的值,然后进行相加,再求平方根即可.
【详解】
解:由题意,
∵,
∴,
∴,,
∴,
∴的平方根为;
故答案为:.
【点睛】
本题考查了估算无理数的大小,以及平方根的定义,正确得出是解题关键.
3、6
【分析】
先求出小正方形面积=大正方形的面积减去4个长方形的面积,然后进行计算即可.
【详解】
解:由题意得:2(a+b)=18,ab=,
∴a+b=9,
∴(a﹣b)2
=(a+b)2﹣4ab
=81﹣45
=36,
又∵a>b,
∴a﹣b=6,
故答案为:6.
【点睛】
本题考查乘法公式的变形计算,平方根计算,掌握公式变形的方法用面积法,利用数形结合思想将问题简单化是解题关键
4、
【分析】
根据平方的运算,可得,即可求解
【详解】
解:∵,
的平方根是,
故答案为:
【点睛】
本题主要考查了平方和平方根的性质,熟练掌握一个正数有两个平方根,且互为相反数是解题的关键.
5、
【分析】
(1)直接根据min{a,b}表示a,b两数中较小的数,表示出(﹣,﹣)较小的数即可;
(2)根据min{a,b}表示a,b两数中较小的数,得出,根据a和b为两个连续正整数,可得结果.
【详解】
解:(1)∵,
∴,
∴min(﹣,﹣)=,
故答案为:;
(2)∵min(,a)=a,min(,b)=,
∴,
∵a和b为两个连续正整数,
∴,
∴,,
∴,
故答案为:.
【点睛】
本题考查了实数的大小比较,无理数的估算,熟练掌握实数的大小比较方法以及无理数的估算方法是解本题的关键.
三、解答题
1、
(1)<2,2>,<-2,>
(2)
(3)
【解析】
(1)
和2是一组团结数,即为<>,
和3不是一组团结数,
和是一组团结数,即为<>,
故答案为:<>,<>;
(2)
若<5,x>成立,则
故答案为:;
(3)
设b左面相邻的数为x,b为-3x,b右面相邻的数为9x.
由题意可得
解得 x=81
所以 b=-243
由于<a,b>成立,则a-243=-243a,解得.
【点睛】
本题考查新定义计算,实际有理数的混合运算、一元一次方程等知识,是基础考点,掌握相关知识是解题关键.
2、
【分析】
先运用零指数幂、负整数指数幂、乘方、绝对值化简原式,然后再计算即可.
【详解】
解:原式=1-8+4+
=.
【点睛】
本题考查了零指数幂、负整数指数幂、绝对值、实数的加减法等知识点,熟练掌握各运算法则是解答本题的关键.
3、
【分析】
根据有理数的乘方运算,有理数的乘方运算,化简绝对值,最后进行实数的混合运算即可
【详解】
解:原式.
【点睛】
本题考查了实数的混合运算,正确的计算是解题的关键.
4、-1
【分析】
由题意可知,,,,将值代入即可.
【详解】
解:由题意得:,;
解得
∴.
【点睛】
本题考查了相反数,倒数,立方根等知识点.解题的关键在于正确理解相反数,倒数,立方根的概念与应用.
5、(1)6;(2);(3)
【分析】
利用立方与开立方互为逆运算进行化简求值.
【详解】
解:(1)
(2)
(3).
【点睛】
本题考查了立方与立方根.解题的关键在于正确计算开方、立方与开立方的运算.
6、x=5;y=2
【分析】
根据非负数的性质可得关于x、y的方程组,求解可得其值;
【详解】
解:由题意可得,
联立得 ,
解方程组得:,
∴x、y的值分别为5、2.
【点睛】
此题考查的是非负数的性质,解二元一次方程组,掌握绝对值及算术平方根的非负性是解决此题的关键.
7、(1);(2)或;(3).
【分析】
(1)原式利用多项式乘以多项式法则,完全平方公式以及题中的新定义计算即可求出值;
(2)利用平方差公式计算得出答案;
(3)分子分母同乘以(2-i)后,把分母化为不含i的数后计算.
【详解】
(1)
∵
∴原式
(2)
∵
∴
∵a、b是正整数
∴或
(3)
【点睛】
本题考查了实数的运算,以及完全平方公式的运用,能读懂题意是解此题的关键,解题步骤为:阅读理解,发现信息;提炼信息,发现规律;运用规律,联想迁移;类比推理,解答问题.
8、
(1)-10
(2)-22
【解析】
(1)
解:
(2)
解:
【点睛】
本题考查了有理数的混合运算,利用新运算代入求值即可,关键在于理解新运算,代入时候看清楚符号是否正确.
9、1
【分析】
分别根据数的开方法则、0指数幂及负整数指数幂的计算法则计算出各数,再进行加减运算即可.
【详解】
解:
【点睛】
本题考查的是实数的运算,熟知数的开方法则、0指数幂及负整数指数幂的计算法则是解答此题的关键.
10、(1)1,,3,;(2)2
【分析】
(1)先估算出和的范围,再根据题目规定的表示方法写出答案即可;
(2)先估算出,的范围,即可求出a,b的值,进一步即可求出结果.
【详解】
(1)∵1<<2,3<<4,
∴[]=1,<>=−1,[]=3,<>=−3,
故答案为:1,,3,;
(2)∵2<<3,10<<11,
∴<>=a=−2,[]=b=10,
∴,
∴的立方根是2.
【点睛】
本题考查了估算无理数的大小和平方根的意义,能够估算出无理数的范围是解决问题的关键.
沪教版 (五四制)七年级下册第十二章 实数综合与测试一课一练: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试一课一练,共22页。试卷主要包含了在0.1010010001…,下列等式正确的是.,下列各数中,比小的数是,规定一种新运算,0.64的平方根是,关于的叙述,错误的是等内容,欢迎下载使用。
数学七年级下册第十二章 实数综合与测试同步训练题: 这是一份数学七年级下册第十二章 实数综合与测试同步训练题,共19页。试卷主要包含了3的算术平方根是,下列说法正确的是,100的算术平方根是,规定一种新运算,9的平方根是等内容,欢迎下载使用。
数学七年级下册第十二章 实数综合与测试综合训练题: 这是一份数学七年级下册第十二章 实数综合与测试综合训练题,共20页。试卷主要包含了100的算术平方根是,下列各数中,最小的数是,的算术平方根是,下列整数中,与-1最接近的是,观察下列算式等内容,欢迎下载使用。