2021学年第十二章 实数综合与测试精练
展开沪教版(上海)七年级数学第二学期第十二章实数必考点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、a为有理数,定义运算符号▽:当a>-2时,▽a=-a;当a<-2时,▽a= a;当a=-2时,▽a= 0.根据这种运算,则▽[4+▽(2-5)]的值为( )
A. B.7 C. D.1
2、下列运算正确的是( )
A. B. C. D.
3、计算2﹣1+30=( )
A. B.﹣1 C.1 D.
4、对于两个有理数、,定义一种新的运算:,若,则的值为( )
A. B. C. D.
5、下列各数中,3.1415,,,0.321,π,2.32232223…(相邻两个3之间的2的个数逐次增加1),无理数有( )
A.0个 B.1个 C.2个 D.3个
6、有一个数值转换器,原理如下:当输入的x为64时,输出的y是( )
A. B.2 C. D.
7、若,则的值为( )
A. B. C. D.
8、下列说法正确的是( )
A.是分数
B.0.1919919991…(每相邻两个1之间9的个数逐次加1)是有理数
C.﹣3x2y+4x﹣1是三次三项式,常数项是1
D.单项式﹣的次数是2,系数为﹣
9、100的算术平方根是( )
A.10 B. C. D.
10、下列等式正确的是( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、一个正方形的面积为5,则它的边长为_____.
2、如图是一个“数值转换机”的示意图,若输入的x的值为﹣2,输出的值为﹣,则输入的y值为 _____.
3、用“*”定义一种新运算:对于任意有理数a和b,规定a*b=ab2+2a,则3*(-2)=_____________.
4、的平方根是__________.
5、如果一个数的平方等于16,那么这个数是________.
三、解答题(10小题,每小题5分,共计50分)
1、计算:
(1)
(2)
2、求下列各式的值:
(1)
(2)
(3)
3、(1)计算:(﹣)×(﹣1)2021+﹣;
(2)求x的值:(3x+2)3﹣1=.
4、阅读材料,回答问题.
下框中是小马同学的作业,老师看了后,找来小马.
问道:“小马同学,你标在数轴上的两个点对应题中两个无理数,是吗?”
小马点点头.
老师又说:“你这两个无理数对应的点找得非常准确,遗憾的是没有完成全部解答.”
请把实数|﹣|,﹣π,﹣4,,2表示在数轴上,并比较它们的大小(用<号连接).
解:
请你帮小马同学将上面的作业做完.
5、计算:.
6、计算
(1)
(2)
7、如图是一个无理数筛选器的工作流程图.
(1)当x为16时,y值为______;
(2)是否存在输入有意义的x值后,却始终输不出y值?如果存在,写出所有满足要求的x值;如果不存在,请说明理由;
(3)如果输入x值后,筛选器的屏幕显示“该操作无法运行”,请你分析输入的x值可能是什么情况?
(4)当输出的y值是时,判断输入的x值是否唯一?如果不唯一,请写出其中的三个.
8、如图,将一个边长为a+b的正方形图形分割成四部分(两个正方形和两个长方形),请认真观察图形,解答下列问题:
(1)根据图中条件,请用两种方法表示该图形的总面积(用含a、b的代数式表示出来);
(2)如果图中的a,b(a>b)满足a2+b2=57,ab=12,求a+b的值.
9、众所周知,所有实数都可以用数轴上的点来表示.其中,我们将数轴上表示正整数的点称为“正点”.取任意一个“正点”P,该数轴上到点P距离为1的点所对应的数分别记为a,b(a<b).定义:若数m=b3﹣a3,则称数m为“复合数”.例如:若“正点”P所表示的数为3,则a=2,b=4,那么m=43﹣23=56,所以56是“复合数”.(提示:b3﹣a3=(b﹣a)(b2+ab+a2).)
(1)请直接判断12是不是“复合数”,并且证明所有的“复合数”与2的差一定能被6整除;
(2)已知两个“复合数”的差是42,求这两个“复合数”.
10、如果一个自然数的个位数字不为,且能分解成,其中与都是两位数,与的十位数字相同,个位数字之和为,则称数为“风雨数”,并把数分解成的过程,称为“同行分解”.
例如:,和的十位数字相同,个位数字之和为,是“风雨数”.
又如:,和的十位数字相同,但个位数字之和不等于,不是“风雨数”.
(1)判断,是否是“风雨数”?并说明理由;
(2)把一个“风雨数”进行“同行分解”,即,与之和记为,与差的绝对值记为,令,当能被整除时,求出所有满足条件的.
-参考答案-
一、单选题
1、A
【分析】
定义运算符号▽:当a>-2时,▽a=-a;当a<-2时,▽a= a;当a=-2时,▽a= 0.先判断a的大小,然后按照题中的运算法则求解即可.
【详解】
解:且当时,▽a=a,
▽(-3)=-3,
4+▽(2-5)=4-3=1>-2,
当a>-2时,▽a=-a,
▽[4+▽(2-5)]=▽1=-1,
故选:A.
【点睛】
此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.
2、B
【分析】
依据算术平方根的性质、立方根的性质、乘方法则、绝对值的性质进行化简即可.
【详解】
A、,故A错误;
B、,故B正确;
C.,故C错误;
D.−|-2|=-2,故D错误.
故选:B.
【点睛】
本题主要考查的是算术平方根的性质、立方根的性质、乘方运算法则、绝对值的性质,熟练掌握相关知识是解题的关键.
3、D
【分析】
利用负整数指数幂和零指数幂的意义进行化简计算即可.
【详解】
解:原式=+1=.
故选:D.
【点睛】
本题主要考查了实数的计算,负整数指数幂的意义,零指数幂的意义,利用实数运算法则进行正确的化简计算是解题的关键.
4、D
【分析】
根据新定义的运算法则得到,求解的值,再按照新定义对进行运算即可.
【详解】
解: ,
,
,
解得:
故选D
【点睛】
本题考查的是新定义运算,完全平方公式的应用,负整数指数幂的含义,理解新定义,按照新定义的运算法则进行运算是解本题的关键.
5、D
【分析】
理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.
【详解】
3.1415,0.321是有限小数,属于有理数;
是分数,属于有理数;
无理数有,π,2.32232223…(相邻两个3之间的2的个数逐次增加1),共3个.
故选:D.
【点睛】
此题考查了无理数.解题的关键是掌握实数的分类.
6、C
【分析】
直接利用立方根以及算术平方根、无理数分析得出答案.
【详解】
解:由题意可得:64的立方根为4,4的算术平方根是2,2的算术平方根是,
即.
故选:C.
【点睛】
本题主要考查了立方根以及算术平方根、无理数的定义,解题的关键是正确掌求一个数的算术平方根.
7、B
【分析】
根据算术平方根、偶次方的非负性确定a和b的值,然后代入计算.
【详解】
解:,
,
,,
解得,,
所以.
故选:B
【点睛】
本题考查的是配方法的应用、非负数的性质,灵活运用配方法、掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.
8、D
【分析】
根据有理数的定义、单项式次数和系数的定义,多项式的定义进行逐一判断即可.
【详解】
解:A、是无限不循环小数,不是分数,故此选项不符合题意;
B、0.1919919991…(每相邻两个1之间9的个数逐次加1)是无限不循环小数,不是有理数,故此选项不符合题意;
C、﹣3x2y+4x﹣1是三次三项式,常数项是-1,故此选项不符合题意;
D、单项式﹣的次数是2,系数为﹣,故此选项符合题意;
故选D.
【点睛】
本题主要考查了有理数的定义、单项式次数和系数的定义,熟知定义是解题的关键:有理数是整数和分数的统称;表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数;几个单项式的和的形式叫做多项式,每个单项式叫做多项式的项,不含字母的项叫做常数项,多项式里,次数最高项的次数叫做多项式的次数.
9、A
【分析】
根据算术平方根的概念:一个正数x的平方等于a,即,那么这个正数x就叫做a的算术平方根,即可解答.
【详解】
解:∵,,(舍去)
∴100的算术平方根是10,
故选A.
【点睛】
本题考查了算术平方根,解题的关键是熟练掌握算术平方根的概念.
10、C
【分析】
根据算术平方根的定义和性质,立方根的定义逐项分析判断即可
【详解】
A. ,故该选项不正确,不符合题意;
B. 无意义,故该选项不正确,不符合题意;
C. ,故该选项正确,符合题意;
D. ,故该选项不正确,不符合题意;
故选C
【点睛】
本题考查了平方根和立方根的概念和求法,理解、记忆平方根和立方根的概念是解题关键.平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数) 其中属于非负数的平方根称之为算术平方根;立方根:如果x3=a,则x叫做a的立方根,记作“”(a称为被开方数).
二、填空题
1、
【分析】
根据正方形面积根式求出边长,即可得出答案.
【详解】
解:边长为:
故答案为
【点睛】
本题考查了算术平方根,关键是会求一个数的算术平方根.
2、-3
【分析】
利用程序图列出式子,根据等式的性质和立方根的意义即可求得y值.
【详解】
解:由题意得:
[(﹣2)2+y3]÷2=﹣.
∴4+y3=﹣23.
∴y3=﹣27.
∵(﹣3)3=﹣27,
∴y=﹣3.
故答案为:﹣3.
【点睛】
本题主要考查了根据程序框图列式计算,立方根的性质,准确计算是解题的关键.
3、18
【分析】
根据a*b=ab2+2a,可得:3*(−2)=3×(−2)2+2×3,据此求出算式的值是多少即可.
【详解】
解:∵a*b=ab2+2a,
∴3*(−2),
=3×(−2)2+2×3,
=3×4+6,
=12+6,
=18.
故答案为:18.
【点睛】
此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.
4、
【分析】
先求出,再根据平方根性质,即可求解.
【详解】
解:∵,
∴的平方根是 .
故答案为:
【点睛】
本题主要考查了平方根的性质,熟练掌握正数有两个平方根,且互为相反数;0的平方根为0;负数没有平方根是解题的关键.
5、
【分析】
根据平方根的定义进行解答即可.
【详解】
解:∵
∴如果一个数的平方等于16,那么这个数是
故答案为:
【点睛】
本题考查了平方根和立方根的概念和求法,理解、记忆平方根和立方根的概念是解题关键.平方根:如果x2=a,则x叫做a的平方根,记作“±”(a称为被开方数)
三、解答题
1、(1)5;(2)
【分析】
(1)分别求解算术平方根与立方根,再进行加减运算即可;
(2)按照多项式除以单项式的法则:把多项式的每一项分别除以单项式,再把所得的商相加,从而可得答案.
【详解】
解:(1)
(2)
【点睛】
本题考查的是求解一个数的算术平方根与立方根,多项式除以单项式,掌握基础运算是解本题的关键.
2、(1)6;(2);(3)
【分析】
利用立方与开立方互为逆运算进行化简求值.
【详解】
解:(1)
(2)
(3).
【点睛】
本题考查了立方与立方根.解题的关键在于正确计算开方、立方与开立方的运算.
3、(1);(2).
【分析】
(1)先计算乘方、立方根和算术平方根,再计算加减法即可得;
(2)利用立方根解方程即可得.
【详解】
解:(1)原式
;
(2),
,
,
,
,
.
【点睛】
本题考查了立方根、算术平方根、利用立方根解方程等知识点,熟练掌握各运算法则是解题关键.
4、图见解析,﹣4<﹣π<|﹣|<2<.
【分析】
根据和确定原点,根据数轴上的点左边小于右边的排序依次表示即可.
【详解】
把实数||,,,,2表示在数轴上如图所示,
<<||<2<.
【点睛】
本题考查用数轴比较点的大小,根据题意先确定原点是解题的关键.
5、1
【分析】
分别根据数的开方法则、0指数幂及负整数指数幂的计算法则计算出各数,再进行加减运算即可.
【详解】
解:
【点睛】
本题考查的是实数的运算,熟知数的开方法则、0指数幂及负整数指数幂的计算法则是解答此题的关键.
6、
(1)-2
(2)1
【分析】
(1)先分别计算开平方和开立方,再进行有理数的加、减混合计算即可;
(2)先去绝对值,去括号,再进行实数的加、减混合计算即可;
(1)
解:
;
(2)
解:
.
【点睛】
本题考查实数的混合运算.掌握运算方法与运算顺序是解出本题的关键.
7、
(1)
(2)0,1
(3)x<0
(4)x=3或x=9或x=81.
【分析】
(1)根据运算规则即可求解;
(2)根据0的算术平方根是0,即可判断;
(3)根据二次根式有意义的条件,被开方数是非负数即可求解;
(4)根据运算法则,进行逆运算即可求得无数个满足条件的数.
(1)
解:当x=16时,,则y=;
故答案是:.
(2)
解:当x=0,1时,始终输不出y值.因为0,1的算术平方根是0,1,一定是有理数;
(3)
解:当x<0时,导致开平方运算无法进行;
(4)
解: x的值不唯一.x=3或x=9或x=81.
【点睛】
本题考查了算术平方根及无理数,正确理解给出的运算方法是关键.
8、(1)或;(2)9
【分析】
(1)由大正方形的边长为可得面积,由大正方形由两个小正方形与两个长方形组成,可利用面积和表示大正方形的面积,从而可得答案;
(2)由(1)可得:再把a2+b2=57,ab=12,利用平方根的含义解方程即可.
【详解】
解:(1) 大正方形的边长为
大正方形由两个小正方形与两个长方形组成,
(2)由(1)得:
a2+b2=57,ab=12,
则
【点睛】
本题考查的是完全平方公式的几何背景,利用平方根的含义解方程,掌握“完全平方公式在几何图形中的应用”是解本题的关键.
9、(1)12不是复合数;证明见解析;(2)98和56.
【分析】
(1)直接利用定义进行判断12不是复合数,利用定义对复合数进行变形即可证明;
(2)借助(1)的证明,所有的复合数都可以写成6x2+2,设出两个复合数进行转化.
【详解】
(1)12不是复合数,
∵找不到两个整数a,b,使a3﹣b3=12,
故12不是复合数,
设“正点”P所表示的数为x(x为正整数),
则a=x﹣1,b=x+1,
∴(x+1)3﹣(x﹣1)3
=(x+1﹣x+1)(x2+2x+1+x2﹣1+x2﹣2x+1)
=2(3x2+1)
=6x2+2,
∴6x2+2﹣2=6x2一定能被6整除;
(2)设两个复合数为6m2+2和6n2+2(m,n都是正整数),
∵两个“复合数”的差是42,
∴(6m2+2)﹣(6n2+2)=42,
∴m2﹣n2=7,
∵m,n都是正整数,
∴,
∴,
∴6m2+2=98,6n2+2=56,
这两个“复合数”为98和56.
【点睛】
本题考查关于实数的新定义题型,理解新定义是解题的关键.
10、(1)195是“风雨数”,621不是“风雨数”,理由见解析;;(2)或或或
【分析】
根据新定义的“风雨数”即可得出答案;
设的十位数为,个位数为,则为,根据能被整除求出的可能的值,再由的值求出的值即可得出答案.
【详解】
解:,且,
是“风雨数”,
,,
不是“风雨数”;
设,则,
,,
能被整除,
,为整数,
,
是的倍数,
满足条件的有,,
若,则,为整数,
,
是的因数,
,,,,
满足条件的有,,,,
,或,或,或,,
或,
若,则,为整数,
,
是的因数,
,,,,,,,,
满足条件的有,,,,
,或,或,或,,
或,
综上,的值为或或或.
【点睛】
本题是新定义题,主要考查了列代数式,一元一次方程的应用,关键是准确理解“风雨数”含义,能把和用含和的式子表示出来.
数学七年级下册第十二章 实数综合与测试同步训练题: 这是一份数学七年级下册第十二章 实数综合与测试同步训练题,共19页。试卷主要包含了3的算术平方根是,下列说法正确的是,100的算术平方根是,规定一种新运算,9的平方根是等内容,欢迎下载使用。
初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课时练习: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课时练习,共19页。试卷主要包含了若,则的值为,在以下实数,下列运算正确的是,下列各组数中相等的是,在0.1010010001…等内容,欢迎下载使用。
沪教版 (五四制)七年级下册第十二章 实数综合与测试课后作业题: 这是一份沪教版 (五四制)七年级下册第十二章 实数综合与测试课后作业题,共18页。试卷主要包含了下列运算正确的是,下列等式正确的是.,已知a=,b=-|-|,c=,下列说法中正确的有,10的算术平方根是,下列说法不正确的是等内容,欢迎下载使用。