开学活动
搜索
    上传资料 赚现金

    2021-2022学年基础强化京改版八年级数学下册第十五章四边形综合测评练习题(无超纲)

    2021-2022学年基础强化京改版八年级数学下册第十五章四边形综合测评练习题(无超纲)第1页
    2021-2022学年基础强化京改版八年级数学下册第十五章四边形综合测评练习题(无超纲)第2页
    2021-2022学年基础强化京改版八年级数学下册第十五章四边形综合测评练习题(无超纲)第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京课改版八年级下册第十五章 四边形综合与测试练习

    展开

    这是一份北京课改版八年级下册第十五章 四边形综合与测试练习,共26页。试卷主要包含了下列图案中,是中心对称图形的是等内容,欢迎下载使用。
    京改版八年级数学下册第十五章四边形综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,可以看作是中心对称图形的是(    A. B.C. D.2、以下分别是回收、节水、绿色包装、低碳4个标志,其中是中心对称图形的是(    ).A. B. C. D.3、下面图案中既是轴对称图形又是中心对称图形的是(  )A. B. C. D.4、如果一个多边形的外角和等于其内角和的2倍,那么这个多边形是(    A.三角形 B.四边形 C.五边形 D.六边形5、如图,四边形ABCD是平行四边形,下列结论中错误的是(    A.当▱ABCD是矩形时,∠ABC=90° B.当▱ABCD是菱形时,ACBDC.当▱ABCD是正方形时,ACBD D.当▱ABCD是菱形时,ABAC6、下列图案中,是中心对称图形的是(    A. B. C. D.7、下列四个图形中,为中心对称图形的是(  )A.  B. C.  D.8、如图,在中,,点分别是上的点,,点分别是的中点,则的长为(    ).A.4 B.10 C.6 D.89、如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为(  )A.180° B.360°C.540° D.不能确定10、已知三角形三边长分别为7cm,8cm,9cm,作三条中位线组成一个新的三角形,同样方法作下去,一共做了五个新的三角形,则这五个新三角形的周长之和为(    A.46.5cm B.22.5cm C.23.25cm D.以上都不对第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,平面直角坐标系中,有三点,以ABO三点为顶点的平行四边形的另一个顶点D的坐标为______.2、如图,点EF在正方形ABCD的对角线AC上,AC=10,AECF=3,则四边形BFDE的面积为 _____.3、平面直角坐标系中,四边形ABCD的顶点坐标分别是A(-3,0),B(0,2),C(3,0),D(0,-2),则四边形ABCD是__________.4、如图,矩形ABCD中,ACBD相交于点OAC=12,如果∠AOD=60°,则DC=__.5、在平行四边形ABCD中,若∠A=130°,则∠B=______,∠C=______,∠D=______.三、解答题(5小题,每小题10分,共计50分)1、(3)点PAC上一动点,则PE+PF最小值为.2、如图,已知矩形中,点分别是上的点,,且(1)求证:(2)若,求的值.3、如图1,在平面直角坐标系中,直线y=2x+8与x轴交于点A,与y轴交于点B,过点B的另一条直线x轴正半轴于点C(1)写出C点坐标                (2)若M为线段BC上一点,且满足SAMBSAOB,请求出点M的坐标;(3)如图2,设点F为线段AB中点,点Gy轴正半轴上一动点,连接FG,以FG为边向FG右侧作正方形FGQP,在G点的运动过程中,当顶点Q落在直线BC上时,求出点G的坐标.4、如图是由3个同样的正方形所组成,请再补上一个同样的正方形,使得由4个正方形组成的图形成为一个中心对称图形.画出所有情况(给出的图形不一定全用,不够可添加).5、如图,四边形ABCD为平行四边形,∠BAD的平分线AFCD于点E,交BC的延长线于点F.点E恰是CD的中点.求证:(1)△ADE≌△FCE(2)BEAF -参考答案-一、单选题1、C【分析】根据中心对称图形的定义进行逐一判断即可.【详解】解:A、不是中心对称图形,故此选项不符合题意;B、不是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项符合题意;D、不是中心对称图形,故此选项不符合题意;故选C.【点睛】本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.2、C【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,即可判断出答案.【详解】解:A、此图形不是中心对称图形,故本选项不符合题意;
    B、此图形不是中心对称图形,故此选项不符合题意;
    C、此图形是中心对称图形,故此选项符合题意;
    D、此图形不是中心对称图形,故此选项不符合题意.
    故选:C.【点睛】此题主要考查了中心对称图形的定义,关键是找出图形的对称中心.3、D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A.不是轴对称图形,也不是中心对称图形,故此选项不合题意;B.是轴对称图形,不是中心对称图形,故此选项不合题意;C.不是轴对称图形,是中心对称图形,故此选项不合题意;D.既是轴对称图形又是中心对称图形,故此选项符合题意.故选:D.【点睛】本题考查了轴对称图形和中心对称图形;如果一个图形沿着某条直线对折后,直线两旁的部分能够重合,则此图形是轴对称图形,这条直线叫做对称轴;如果一个图形绕某一固定点旋转180度后能够与原来的图形重合,则称这个图形是中心对称图形,固定的点叫对称中心;理解两个概念是解答本题的关键.4、A【分析】多边形的外角和是360度,多边形的外角和是内角和的2倍,则多边形的内角和是180度,则这个多边形一定是三角形.【详解】解:多边形的外角和是360度,多边形的外角和是内角和的2倍,多边形的内角和是180度,这个多边形是三角形.故选:A.【点睛】考查了多边形的外角和定理,解题的关键是掌握多边形的外角和定理.5、D【分析】由矩形的四个角是直角可判断A,由菱形的对角线互相垂直可判断B,由正方形的对角线相等可判断C,由菱形的四条边相等可判断D,从而可得答案.【详解】解:当▱ABCD是矩形时,∠ABC=90°,正确,故A不符合题意;当▱ABCD是菱形时,ACBD,正确,故B不符合题意;当▱ABCD是正方形时,ACBD,正确,故C不符合题意;当▱ABCD是菱形时,ABBC,故D符合题意;故选D【点睛】本题考查的是矩形,菱形,正方形的性质,熟练的记忆矩形,菱形,正方形的性质是解本题的关键.6、B【分析】由题意依据一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形对各选项分析判断即可.【详解】解:A、C、D都是轴对称图形,只有B选项是中心对称图形.故选:B.【点睛】本题考查中心对称图形的识别,注意掌握中心对称图形是要寻找对称中心,旋转180度后与原图重合.7、B【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【详解】解:选项B能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形;选项ACD不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形;故选:B.【点睛】此题主要考查了中心对称图形定义,关键是找出对称中心.8、B【分析】根据三角形中位线定理得到PD=BF=6,PDBC,根据平行线的性质得到∠PDA=∠CBA,同理得到∠PDQ=90°,根据勾股定理计算,得到答案.【详解】解:∵∠C=90°,∴∠CAB+∠CBA=90°,∵点PD分别是AFAB的中点,PD=BF=6,PD//BC∴∠PDA=∠CBA同理,QD=AE=8,∠QDB=∠CAB∴∠PDA+∠QDB=90°,即∠PDQ=90°,PQ==10,故选:B.【点睛】本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.9、B【分析】BEDF交于点MBEAC交于点N,根据三角形的外角性质,可得 ,再根据四边形的内角和等于360°,即可求解.【详解】解:设BEDF交于点MBEAC交于点N故选:B【点睛】本题主要考查了三角形的外角性质,多边形的内角和,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和;四边形的内角和等于360°是解题的关键.10、C【分析】如图所示,DEDFEF分别是三角形ABC的中位线,GHGIHI分别是△DEF的中位线,则,即可得到△DEF的周长,由此即可求出其他四个新三角形的周长,最后求和即可.【详解】解:如图所示,DEDFEF分别是三角形ABC的中位线,GHGIHI分别是△DEF的中位线,∴△DEF的周长同理可得:△GHI的周长∴第三次作中位线得到的三角形周长为∴第四次作中位线得到的三角形周长为∴第三次作中位线得到的三角形周长为∴这五个新三角形的周长之和为故选C.【点睛】本题主要考查了三角形中位线定理,解题的关键在于能够熟练掌握三角形中位线定理.二、填空题1、(9,4)、(-3,4)、(3,-4)【分析】根据平行四边形的性质得出AD=BO=6,ADBO,根据平行线得出AD的纵坐标相等,根据B的横坐标和BO的值即可求出D的横坐标.【详解】∵平行四边形ABCD的顶点ABO的坐标分别为(3,4)、(6,0)、(0,0),AD=BO=6,ADBOD的横坐标是3+6=9,纵坐标是4,D的坐标是(9,4),同理可得出D的坐标还有(-3,4)、(3,-4).故答案为:(9,4)、(-3,4)、(3,-4).【点睛】本题考查了坐标与图形性质和平行四边形的性质,注意:平行四边形的对边平行且相等.2、20【分析】连接BD,交ACO,根据题意和正方形的性质可求得EF=4,ACBD,由即可求解.【详解】解:如图,连接BD,交ACO∵四边形ABCD是正方形,AC=10,ACBD=10,ACBDOAOCOBOD=5,AECF=3,EOFO=2,EF=EO+FO=4, 故答案为:20.【点睛】本题主要考查了正方形的性质,熟练掌握正方形的对角线相等且互相垂直平分是解题的关键.3、菱形【分析】先在坐标系中画出四边形ABCD,由ABCD的坐标即可得到OA=OC=3,OB=OD=2,再由ACBD,即可得到答案.【详解】解:图象如图所示:
     A(-3,0)、B(0,2)、C(3,0)、D(0,-2),OA=OC=3,OB=OD=2,∴四边形ABCD为平行四边形,ACBD∴四边形ABCD为菱形,故答案为:菱形.【点睛】本题主要考查了菱形的判定,坐标与图形,解题的关键在于能够熟练掌握菱形的判定条件.4、【分析】根据矩形的对角线互相平分且相等可得OAOD,然后判断出△AOD是等边三角形,再根据勾股定理解答即可.【详解】解:∵四边形ABCD是矩形,OAODAC×12=6,∠ADC=90°,∵∠AOD=60°,∴△AOD是等边三角形,ADOA=6,故答案为:【点睛】本题考查了矩形的性质和勾股定理以及等边三角形的判定,解题关键是根据矩形的性质得出△AOD是等边三角形.5、            【分析】利用平行四边形的性质:邻角互补,对角相等,即可求得答案.【详解】解:在平行四边形ABCD中,的邻角,的对角,故答案为:【点睛】本题主要是考查了平行四边形的性质:对角相等,邻角互补,熟练掌握平行四边形的性质,求解决本题的关键.三、解答题1、见解析【分析】(1)根据折叠的性质可得:∠1=∠2,再由矩形的性质,可得∠2=∠3,从而得到∠1=∠3,即可求解;(2)设FD=x,则AF=CF=8-x,再由勾股定理,可得DF=3,从而得到CF=5,即可求解;(3)连接PB,根据折叠的性质可得△ECP≌△BCP,从而得到PE=PB,进而得到当点FPB三点共线时,PE+PF最小,最小值为BF的长,再由勾股定理,即可求解.【详解】(1)解:△ACF是等腰三角形,理由如下:如图,由折叠可知,∠1=∠2,∵四边形ABCD是矩形,ABCD∴∠2=∠3,∴∠1=∠3,AF=CF∴△ACF是等腰三角形;(2)∵四边形ABCD是矩形且AB=8,BC=4,AD=BC=4,CD=AB=8,∠D=90°,FD=x,则AF=CF=8-xRtAFD中,根据勾股定理得AD2+DF2=AF2∴42+x2=(8-x2解得x=3  ,即DF=3,CF=8-3=5,(3)如图,连接PB根据折叠得:CE=CB,∠ECP=∠BCPCP=CP∴△ECP≌△BCPPE=PBPE+PF=PE+PB∴当点FPB三点共线时,PE+PF最小,最小值为BF的长,由(2)知:CF=5,BC=4,∠BCF=90°,PE+PF最小值为【点睛】本题主要考查了矩形与折叠问题,等腰三角形的判定,熟练掌握矩形和折叠的性质是解题的关键.2、(1)见解析;(2)【分析】(1)根据矩形的性质得到,由垂直的定义得到,根据余角的性质得到,根据全等三角形的判定和性质即可得到结论;(2)由已知条件得到,由,即可得到的值.【详解】(1)∵四边形是矩形,中,(2)∵【点睛】本题考查了矩形的性质,全等三角形的判定和性质,正确的识别图形是解题的关键.3、(1)点C(6,0);(2)点;(3)满足条件的点G坐标为【分析】(1)直接利用直线,令y=0,解方程即可;(2)结合图形,由SAMBSAOB 分析出直线OM平行于直线AB,再利用两直线相交建立方程组,解方程组求得交点M的坐标;(3)分两种情形:①当n>4时,如图2-1中,点Q落在BC上时,点Q落在BC上时,过GMN平行于x轴,过点FQ作该直线的垂线,分别交于MN.求出Q(n-4,n-2).②当n<4时,如图2-2中,同法可得Q(4-nn+2),代入直线BC的解析式解方程即可解决问题.【详解】解:(1)∵直线x轴正半轴于点C∴当y=0时,解得x=6∴点C(6,0)故答案为(6,0);(2)连接OM并双向延长,SAMBSAOB ∴点OAB与点MAB的距离相等,∴直线OM平行于直线AB∵AB解析式为y=2x+8,故设直线OM解析式为:将直线OM的解析式与直线BC的解析式联立得方程组得:解得:故点(3)∵直线y=2x+8与x轴交于点A,与y轴交于点B∴令y=0,2x+8=0,解得x=-4,A(-4,0),令x=0y=8B(0,8),∵点FAB中点,F横坐标为,纵坐标为
    F(-2,4),G(0,n),
    ①当n>4时,如图2-1中,点Q落在BC上时,过GMN平行于x轴,过点FQ作该直线的垂线,分别交于MN

    ∵四边形FGQP是正方形,FG=QG,∠FGQ=90°,∴∠MGF+∠NGQ=180°-∠FGQ=180°-90°=90°,FMMNQNMN∴∠M=∠N=90°,∴∠MFG+∠MGF=90°,∴∠MFG=∠NGQ△FMG和△GNQ中,∴△FMG≌△GNQ
    MG=NQ=2,FM=GN=n-4,
    Qn-4,n-2),∵点Q在直线上,,②当n<4时,如图2-2中,Q落在BC上时,过GMN平行于x轴,过点FQ作该直线的垂线,分别交于MN
    ∵四边形FGQP是正方形,FG=QG,∠FGQ=90°,∴∠MGF+∠NGQ=180°-∠FGQ=180°-90°=90°,FMMNQNMN∴∠M=∠N=90°,∴∠MFG+∠MGF=90°,∴∠MFG=∠NGQ△FMG和△GNQ中,∴△FMG≌△GNQ
    MG=NQ=2,FM=GN= 4-n
    Q(4- n n+2),∵点Q在直线上,n=-2,

    综上所述,满足条件的点G坐标为【点睛】本题属于一次函数综合题,考查了一次函数与坐标轴的交点,平行线性质,两直线联立解方程组,全等三角形的判定和性质,正方形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.4、见解析【分析】根据中心对称图形的概念求解即可.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.【详解】解:如图所示,一共有三种情况:【点睛】此题考查了画中心对称图形,解题的关键是熟练掌握中心对称图形的概念.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.5、(1)见解析;(2)见解析.【分析】(1)由平行四边形的性质得出ADBC,得出∠D=∠ECF,则可证明△ADE≌△FCEASA);(2)由平行四边形的性质证出ABBF,由全等三角形的性质得出AEFE,由等腰三角形的性质可得出结论.【详解】证明:(1)∵四边形ABCD为平行四边形,ADBC∴∠D=∠ECFECD的中点,EDEC在△ADE和△FCE中,∴△ADE≌△FCEASA);(2)∵四边形ABCD为平行四边形,ABCDADBC∴∠FAD=∠AFB又∵AF平分∠BAD∴∠FAD=∠FAB∴∠AFB=∠FABABBF∵△ADE≌△FCEAEFEBEAF【点睛】本题主要考查了平行四边形的性质,全等三角形的性质与判定,角平分线的定义,等腰三角形的性质与判定,熟知相关知识是解题的关键. 

    相关试卷

    初中数学北京课改版八年级下册第十五章 四边形综合与测试课后复习题:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课后复习题,共25页。

    数学八年级下册第十五章 四边形综合与测试当堂检测题:

    这是一份数学八年级下册第十五章 四边形综合与测试当堂检测题,共23页。试卷主要包含了下列图案中,是中心对称图形的是等内容,欢迎下载使用。

    初中数学北京课改版八年级下册第十五章 四边形综合与测试精练:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试精练,共25页。试卷主要包含了下列∠A等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map