搜索
    上传资料 赚现金
    2022年必考点解析沪教版(上海)七年级数学第二学期第十二章实数同步测评试题(含解析)
    立即下载
    加入资料篮
    2022年必考点解析沪教版(上海)七年级数学第二学期第十二章实数同步测评试题(含解析)01
    2022年必考点解析沪教版(上海)七年级数学第二学期第十二章实数同步测评试题(含解析)02
    2022年必考点解析沪教版(上海)七年级数学第二学期第十二章实数同步测评试题(含解析)03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课堂检测

    展开
    这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试课堂检测,共1页。试卷主要包含了估计的值应该在.,下列说法中错误的是,下列判断,16的平方根是等内容,欢迎下载使用。

    沪教版(上海)七年级数学第二学期第十二章实数同步测评

     考试时间:90分钟;命题人:数学教研组

    考生注意:

    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟

    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上

    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

    I卷(选择题  30分)

    一、单选题(10小题,每小题3分,共计30分)

    1、在下列四个实数中,最大的数是(  )

    A.0 B.﹣2 C.2 D.

    2、如果一个正数a的两个不同平方根是2x-2和6-3x,则这个正数a的值为(   

    A.4 B.6 C.12 D.36

    3、计算2﹣1+30=(   

    A. B.﹣1 C.1 D.

    4、估计的值应该在(    ).

    A.1和2之间 B.2和3之间 C.3和4之间 D.4和5之间

    5、下列说法中错误的是(  )

    A.9的算术平方根是3 B.的平方根是

    C.27的立方根为 D.平方根等于±1的数是1

    6、一个正方体的体积是5m3,则这个正方体的棱长是(  )

    A.m B.m C.25m D.125m

    7、下列判断:①10的平方根是±;②互为相反数;③0.1的算术平方根是0.01;④(3a;⑤=±a2.其中正确的有(  )

    A.1个 B.2个 C.3个 D.4个

    8、在实数,0.1010010001…(相邻两个1中间依次多1个0)中,无理数有(    ).

    A.2个 B.3个 C.4个 D.5个

    9、16的平方根是(  )

    A.±8 B.8 C.4 D.±4

    10、下列说法正确的是( 

    A.0.01是0.1的平方根

    B.小于0.5

    C.的小数部分是

    D.任意找一个数,利用计算器对它开立方,再对得到的立方根进行开立方……如此进行下去,得到的数会越来越趋近1

    第Ⅱ卷(非选择题  70分)

    二、填空题(5小题,每小题4分,共计20分)

    1、若,且ab是两个连续的整数,则的值为______.

    2、的算术平方根是_____,的立方根是_____,的倒数是_____.

    3、0.064的立方根是______.

    4、计算____________;

    5、用“*”定义一种新运算:对于任意有理数ab,规定a*bab2+2a,则3*(-2)=_____________.

    三、解答题(10小题,每小题5分,共计50分)

    1、已知x-2的平方根是±2,x+2y+7的立方根是3,求3xy的算术平方根.

    2、如图:在数轴上A点表示数aB点表示数bC点表示数c,且ab满足|a+3|+(b﹣9)2=0,c=1.

    (1)a     b     

    (2)点P为数轴上一动点,其对应的数为x,则当x     时,代数式|xa|﹣|xb|取得最大值,最大值为      

    (3)点P从点A处以1个单位/秒的速度向左运动;同时点Q从点B处以2个单位/秒的速度也向左运动,在点Q到达点C后,以原来的速度向相反的方向运动,设运动的时间为tt≤8)秒,求第几秒时,点PQ之间的距离是点BQ之问距离的2倍?

    3、求下列各式中的x

    (1)

    (2)

    4、解方程:

    (1)x2=25;       

    (2)8(x+1)3=125.

    5、计算 

    6、如图1,依次连接2×2方格四条边的中点,得到一个阴影正方形,设每一方格的边长为1个单位,则这个阴影正方形的边长为

    (1)图1中阴影正方形的边长为      ;点P表示的实数为      

    (2)如图2,在4×4方格中阴影正方形的边长为a.

    ①写出边长a的值.

    ②请仿照(1)中的作图在数轴上表示实数﹣a+1.

    7、已知xy满足,求xy的值.

    8、解方程,求x的值.

    (1)                    

    (2)

    9、计算:

    (1)

    (2)+(2

    10、阅读下列材料:

    根据你观察到的规律,解决下列问题:

    (1)写出①组中的第5个等式;

    (2)写出②组的第n个等式,并证明;

    (3)计算:

     

    -参考答案-

    一、单选题

    1、C

    【分析】

    先根据正数大于0,0大于负数,排除,然后再用平方法比较2与即可.

    【详解】

    解:正数负数,

    排除

    最大的数是2,

    故选:

    【点睛】

    本题考查了实数的大小比较,算术平方根,熟练掌握用平方法来比较大小是解题的关键.

    2、D

    【分析】

    根据正数平方根有两个,它们是互为相反数,可列方程2x-2+6-3x=0,解方程即可.

    【详解】

    解:∵一个正数a的两个不同平方根是2x-2和6-3x

    ∴2x-2+6-3x=0,

    解得:x=4,

    ∴2x-2=2×4-2=8-2=6,

    ∴正数a=62=36.

    故选择D.

    【点睛】

    本题考查平方根性质,一元一次方程,掌握正数有两个平方根,它们是互为相反数,零的平方根是零,负数没有平方根是解题关键.

    3、D

    【分析】

    利用负整数指数幂和零指数幂的意义进行化简计算即可.

    【详解】

    解:原式=+1=

    故选:D.

    【点睛】

    本题主要考查了实数的计算,负整数指数幂的意义,零指数幂的意义,利用实数运算法则进行正确的化简计算是解题的关键.

    4、C

    【分析】

    根据25<29<36估算出的大小,然后可求得的范围.

    【详解】

    解:∵25<29<36,

    ,即5<<6.

    5、C

    【分析】

    根据平方根,算术平方根,立方根的性质,即可求解.

    【详解】

    解:A、9的算术平方根是3,故本选项正确,不符合题意;

    B、因为 ,4的平方根是 ,故本选项正确,不符合题意;

    C、27的立方根为3,故本选项错误,符合题意;

    D、平方根等于±1的数是1,故本选项正确,不符合题意;

    故选:C

    【点睛】

    本题主要考查了平方根,算术平方根,立方根的性质,熟练掌握平方根,算术平方根,立方根的性质是解题的关键.

    6、B

    【分析】

    根据正方体的体积公式:Va3,把数据代入公式解答.

    【详解】

    解:××=5(立方米),

    答:这个正方体的棱长是米,

    故选:B.

    【点睛】

    此题主要考查正方体体积公式的灵活运用,关键是熟记公式.

    7、C

    【分析】

    根据平方根和算术平方根的概念,对每一个答案一一判断对错.

    【详解】

    解:①10的平方根是±,正确;

    是相反数,正确;

    ③0.1的算术平方根是,故错误;

    ④(3a,正确;

    a2,故错误;

    正确的是①②④,有3个.

    故选:C.

    【点睛】

    本题考查了平方根、立方根和算术平方根的概念,一定记住:一个正数的平方根有两个它们互为相反数;零的平方根是零;负数没有平方根.

    8、D

    【分析】

    无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.

    【详解】

    解:是有理数,

    是无限循环小数,是有理数,

    是分数,是有理数,

    ,0.1010010001…(相邻两个1中间依次多1个0)是无理数,共个,

    故选:D.

    【点睛】

    此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.

    9、D

    【分析】

    根据平方根可直接进行求解.

    【详解】

    解:∵(±4)2=16,

    ∴16的平方根是±4.

    故选:D.

    【点睛】

    本题主要考查平方根,熟练掌握求一个数的平方根是解题的关键.

    10、C

    【分析】

    根据平方根的定义,以及无理数的估算等知识点进行逐项分析判断即可.

    【详解】

    解:A、0.1是0.01的平方根,原说法错误,不符合题意;

    B、由,得,原说法错误,不符合题意;

    C、由,得,即的整数部分为4,则小数部分为,原说法正确,符合题意;

    D、例如0和-1按此方法无限计算,结果仍为0和-1,并不是趋近于1,原说法错误,不符合题意;

    故选:C.

    【点睛】

    本题考查平方根的定义,无理数的估算等,掌握实数的相关基本定义是解题关键.

    二、填空题

    1、7

    【分析】

    先判断出的取值范围,确定ab的值,即可求解.

    【详解】

    解:∵

    a=3,b=4,

    a+b=7.

    故答案为:7.

    【点睛】

    本题考查了无理数的估算,正确估算出的取值范围是解题关键.

    2、9

    【分析】

    根据相反数,算术平方根,立方根,平方根,倒数,绝对值的定义求出即可.

    【详解】

    解:=81的算术平方根是9,=的立方根是的倒数是

    故答案为:-9,

    【点睛】

    本题考查了算术平方根,立方根,平方根,倒数等知识点的应用,主要考查学生的理解能力和计算能力.

    3、0.4

    【分析】

    根据立方根的定义直接求解即可.

    【详解】

    解:∵

    ∴0.064的立方根是0.4.

    故答案为:0.4.

    【点睛】

    本题考查了立方根,解决本题的关键是熟记立方根的定义.

    4、-3

    【分析】

    根据立方根、算术平方根可直接进行求解.

    【详解】

    解:原式=

    故答案为-3.

    【点睛】

    本题主要考查立方根、算术平方根,熟练掌握求一个数的立方根及算术平方根是解题的关键.

    5、18

    【分析】

    根据a*bab2+2a,可得:3*(−2)=3×(−2)2+2×3,据此求出算式的值是多少即可.

    【详解】

    解:∵a*bab2+2a

    ∴3*(−2),

    =3×(−2)2+2×3,

    =3×4+6,

    =12+6,

    =18.

    故答案为:18.

    【点睛】

    此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.

    三、解答题

    1、5

    【分析】

    根据题意直接利用平方根以及立方根的性质得出xy的值,进而利用算术平方根的定义得出答案.

    【详解】

    解:∵x-2的平方根是±2,

    x-2=4,

    解得:x=6,

    x+2y+7的立方根是3,

    ∴6+2×y+7=27,

    解得:y=7,

    ∴3xy=25,

    ∴3xy的算术平方根是5.

    【点睛】

    本题主要考查平方根以及立方根的性质、算术平方根,正确得出xy的值是解题的关键.

    2、(1)﹣3,9;(2)≥9,12;(3)秒或秒.

    【分析】

    (1)由|a+3|+(b﹣9)2=0,根据非负数的性质得|a+3|=0,(b﹣9)2=0,即可求出a=﹣3、b=9;

    (2)由(1)得a=﹣3、b=9,则代数式|xa|﹣|xb|即代数式|x+3|﹣|x﹣9|,按x<﹣3、﹣3≤x<9及x≥9分类讨论,分别求出相应的代数式的值或范围,再确定代数式的最大值;

    (3)先由点C表示的数是1,点B表示的数是9,计算出BC两点之间的距离,确定t的取值范围,再按t的不同取值范围分别求出相应的t的值即可.

    【详解】

    解:(1)∵|a+3|≥0,(b﹣9)2≥0,且|a+3|+(b﹣9)2=0,

    ∴|a+3|=0,(b﹣9)2=0,

    a=﹣3,b=9,

    故答案为:﹣3,9.

    (2)∵a=﹣3,b=9,

    ∴代数式|xa|﹣|xb|即代数式|x+3|﹣|x﹣9|,

    x<﹣3时,|x+3|﹣|x﹣9|=﹣(x+3)﹣(9﹣x)=﹣12;

    当﹣3≤x<9时,|x+3|﹣|x﹣9|=x+3﹣(9﹣x)=2x﹣6,

    ∵﹣12≤2x﹣6<12,

    ∴﹣12≤|x+3|﹣|x﹣9|<12;

    x≥9时,|x+3|﹣|x﹣9|=x+3﹣(x﹣9)=12,

    综上所述,|x+3|﹣|x﹣9|的最大值为12,

    故答案为:≥9,12.

    (3)∵点C表示的数是1,点B表示的数是9,

    BC两点之间的距离是9﹣1=8,

    当点Q与点C重合时,则2t=8,

    解得t=4,

    当0<t≤4时,如图1,点P表示的数是﹣3﹣t,点Q表示的数是9﹣2t

    根据题意得9﹣2t﹣(﹣3﹣t)=2×2t

    解得t

    当4<t≤8时,如图2,点P表示的数仍是﹣3﹣t

    ∵1+(2t﹣8)=2t﹣7,

    ∴点Q表示的数是2t﹣7,

    根据题意得2t﹣7﹣(﹣3﹣t)=2(16﹣2t),

    解得t

    综上所述,第秒或第秒,点PQ之间的距离是点BQ之间距离的2倍.

    【点睛】

    本题考查数轴、数轴上两点间的距离,一元一次方程的应用、绝对值的几何意义等知识,是重要考点,难度一般,掌握相关知识是解题关键.

    3、(1);(2)

    【分析】

    (1)根据等式的性质和平方根的意义进行计算即可;

    (2)根据等式的性质和立方根的意义进行计算即可.

    【详解】

    解:(1)

    两边都除以4得,

    所以,

    (2)

    两边都减1得,

    所以,

    解得,

    【点睛】

    本题考查等式的性质、立方根、平方根的意义,解题的关键是掌握等式的性质、平方根、立方根的意义是正确解答的关键.

    4、(1);(2)

    【分析】

    (1)根据平方根的定义计算即可;

    (2)根据立方根的定义计算即可;

    【详解】

    解:(1)x2=25

    x=±5.

    (2)

    x+1=

    x

    【点睛】

    本题主要考查平方根、立方根,熟练掌握平方根、立方根的定义是解决本题的关键.

    5、

    【分析】

    直接根据有理数的乘方,算术平方根,立方根以及绝对值的性质化简各项,再进行加减运算得出答案.

    【详解】

    解:

    =

    =

    【点睛】

    本题主要考查了实数的运算,正确化简各数是解题的关键.

    6、(1),1+;(2)①;②见解析

    【分析】

    (1)先利用大正方形的面积减去四个三角形的面积可得正方形ABCD的面积,再求其算术平方根即可得;

    (2)①先利用大正方形的面积减去四个三角形的面积可得阴影部分正方形的面积,再求其算术平方根即可得;

    ②由数轴上表示1的点为圆心画弧,与数轴负半轴的交点表示的数即为

    【详解】

    解:(1)正方形ABCD的面积为:

    正方形ABCD的边长为:

    由题意得:点表示的实数为:

    故答案为:

    (2)①阴影部分正方形面积为:

    求其算术平方根可得:

    ②如图所示:

    表示的数即为

    【点睛】

    本题考查了割补法求面积以及实数与数轴等知识,熟练掌握割补法求面积是解题的关键.

    7、x=5;y=2

    【分析】

    根据非负数的性质可得关于xy的方程组,求解可得其值;

    【详解】

    解:由题意可得

    联立得

    解方程组得:

    xy的值分别为5、2.

    【点睛】

    此题考查的是非负数的性质,解二元一次方程组,掌握绝对值及算术平方根的非负性是解决此题的关键.

    8、(1) ;(2)x=−

    【分析】

    (1)方程变形后,利用平方根定义开方即可求出解;

    (2)把x−1可做一个整体求出其立方根,进而求出x的值.

    【详解】

    解:(1)

    (2)8(x−1)3=−27,

    x−1)3=−

    x−1=−

    x=−

    【点睛】

    本题考查了平方根、立方根.熟练掌握平方根、立方根的定义和性质是解题的关键.

    9、(1);(2)

    【分析】

    (1)先根据立方根、算术平方根和零指数幂的意义化简,再根据有理数的运算法则计算;

    (2)先根据立方根和算术平方根的意义化简,再根据有理数的运算法则计算.

    【详解】

    (1)原式

    (2)原式

    【点睛】

    此题考查了实数的运算,熟练掌握立方根和算术平方根的意义是解本题的关键.

    10、

    (1)

    (2),证明见解析;

    (3)

    【分析】

    (1)根据前几个等式的变化规律即可求解;

    (2)根据前几个等式的变化规律即可得出第n个等式,根据异分母分式的减法法则证明即可;

    (3)根据前三组观察出的变化规律求解即可.

    (1)

    解:∵

    ∴第5个等式为

    (2)

    解:∵

    ∴第n个等式为

    证明:右边=

    左边=

    ∵右边=左边,

    (3)

    解:∵===

    =

    =

    =

    =

    =

    【点睛】

    本题考查分式规律性问题,涉及用代数式表示数的规律、异分母分式的减法、与实数运算有关的规律题,理解题意,正确得出变化规律,会利用类比的思想方法解决问题是解答的关键.

     

    相关试卷

    初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试综合训练题: 这是一份初中数学沪教版 (五四制)七年级下册第十二章 实数综合与测试综合训练题,共20页。试卷主要包含了在实数中,无理数的个数是,下列四个数中,最小的数是,10的算术平方根是,下列说法正确的是,的相反数是,下列说法中,正确的是等内容,欢迎下载使用。

    2020-2021学年第十二章 实数综合与测试一课一练: 这是一份2020-2021学年第十二章 实数综合与测试一课一练,共1页。试卷主要包含了下列说法中错误的是,在下列各数,下列说法正确的是,﹣π,﹣3,,的大小顺序是,下列说法中正确的有等内容,欢迎下载使用。

    数学七年级下册第十二章 实数综合与测试精练: 这是一份数学七年级下册第十二章 实数综合与测试精练,共1页。试卷主要包含了实数在哪两个连续整数之间,以下正方形的边长是无理数的是,估计的值在,已知a=,b=-|-|,c=等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map