年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    精品试卷京改版八年级数学下册第十五章四边形课时练习试题(含答案解析)

    精品试卷京改版八年级数学下册第十五章四边形课时练习试题(含答案解析)第1页
    精品试卷京改版八年级数学下册第十五章四边形课时练习试题(含答案解析)第2页
    精品试卷京改版八年级数学下册第十五章四边形课时练习试题(含答案解析)第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北京课改版八年级下册第十五章 四边形综合与测试当堂达标检测题

    展开

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试当堂达标检测题,共23页。试卷主要包含了下列∠A等内容,欢迎下载使用。
    京改版八年级数学下册第十五章四边形课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、如图,四边形ABCD为平行四边形,延长ADE,使DE=AD,连接EBECDB,添加一个条件,不能使四边形DBCE成为矩形的是(  )A.AB=BE B.DEDC C.∠ADB=90° D.CEDE2、如图,在平面直角坐标系中,点Ax轴正半轴上的一个动点,点Cy轴正半轴上的点,于点C.已知.点B到原点的最大距离为(    A.22 B.18 C.14 D.103、下列图形中,既是轴对称图形又是中心对称图形的是(  )A. B. C. D.4、若一个正多边形的每一个外角都等于36°,则这个正多边形的边数是(  )A.7 B.8 C.9 D.105、下列∠A:∠B:∠C:∠D的值中,能判定四边形ABCD是平行四边形的是(    A.1:2:3:4 B.1:4:2:3C.1:2:2:1 D.3:2:3:26、下列四个图形中,为中心对称图形的是(  )A.  B. C.  D.7、如图,在中,∠ACB=90°,AB=10,CDAB边上的中线,则CD的长是(    A.20 B.10 C.5 D.28、在平行四边形ABCD中,∠A=30°,那么∠B∠A的度数之比为(     A.4:1 B.5:1 C.6:1 D.7:19、四边形的内角和与外角和的数量关系,正确的是(  )A.内角和比外角和大180° B.外角和比内角和大180°C.内角和比外角和大360° D.内角和与外角和相等10、在平面直角坐标系中,点关于原点对称的点的坐标是(    A. B. C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、已知一个正多边形的内角和为1080°,那么从它的一个顶点出发可以引 _____条对角线.2、如图,在矩形ABCD中,AD=3AB,点GH分别在ADBC上,连BGDH,且,当=_______时,四边形BHDG为菱形.3、菱形的对角线之比为3:4,且面积为24,则它的对角线分别为________.4、如图,在正方形ABCD中,AB=2,取AD的中点E,连接EB,延长DAF,使EFEB,以线段AF为边作正方形AFGH,点H在线段AB上,则的值是 _____.5、四边形的外角度数之比为1:2:3:4,则它最大的内角度数为_____.三、解答题(5小题,每小题10分,共计50分)1、如图,在矩形中,为对角线.(1)用尺规完成以下作图:在上找一点,使,连接,作的平分线交于点;(保留作图痕迹,不写作法)(2)在(1)所作的图形中,若,求的度数.2、已知一个多边形的内角和是外角和的2倍,求这个多边形的边数.3、如图,已知在RtABC中,∠ACB=90°,CD是斜边AB上的中线,点E是边BC延长线上一点,连接AEDE,过点CCFDE于点F,且DFEF(1)求证:ADCE    (2)若CD=5,AC=6,求△AEB的面积.4、如图,在等腰三角形ABC中,ABBC,将等腰三角形ABC绕顶点B按逆时针方向旋转角a的位置,AB相交于点DAC分别交于点EF(1)求证:BCF(2)当Ca时,判定四边形的形状并说明理由.5、如图,△AOB是等腰直角三角形.(1)若A(﹣4,1),求点B的坐标;(2)ANy轴,垂足为NBMy轴,垂足为点M,点PAB的中点,连PM,求∠PMO度数;(3)在(2)的条件下,点QON的中点,连PQ,求证:PQAM -参考答案-一、单选题1、B【分析】先证明四边形BCED为平行四边形,再根据矩形的判定进行解答.【详解】解:∵四边形ABCD为平行四边形,ADBC,且AD=BC又∵AD=DEDEBC,且DE=BC∴四边形BCED为平行四边形,A、∵AB=BEDE=ADBDAE□DBCE为矩形,故本选项不符合题意;B、∵DEDC∴∠EDB=90°+∠CDB>90°,∴四边形DBCE不能为矩形,故本选项符合题意;C、∵∠ADB=90°,∴∠EDB=90°,□DBCE为矩形,故本选项不符合题意;D、∵CEDE∴∠CED=90°,□DBCE为矩形,故本选项不符合题意.故选:B【点睛】本题考查了平行四边形的判定和性质、矩形的判定等知识,判定四边形BCED为平行四边形是解题的关键.2、B【分析】首先取AC的中点E,连接BEOEOB,可求得OEBE的长,然后由三角形三边关系,求得点B到原点的最大距离.【详解】解:取AC的中点E,连接BEOEOB∵∠AOC=90°,AC=16,OECEAC=8,BCACBC=6,BE10,若点OEB不在一条直线上,则OBOE+BE=18.若点OEB在一条直线上,则OBOE+BE=18,∴当OEB三点在一条直线上时,OB取得最大值,最大值为18.故选:B【点睛】此题考查了直角三角形斜边上的中线的性质以及三角形三边关系.此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.3、D【分析】根据轴对称图形与中心对称图形的概念求解即可.【详解】解:A.是轴对称图形,不是中心对称图形,故此选项不合题意;B.是轴对称图形,不是中心对称图形,故此选项不合题意;C.是轴对称图形,不是中心对称图形,故此选项符合题意;D.是轴对称图形,也是中心对称图形,故此选项不合题意.故选D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.4、D【分析】根据多边形外角和定理求出正多边形的边数.【详解】∵正多边形的每一个外角都等于36°,∴正多边形的边数==10.故选:D【点睛】本题考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.5、D【分析】两组对角分别相等的四边形是平行四边形,所以∠A和∠C是对角,∠B和∠D是对角,对角的份数应相等.【详解】解:根据平行四边形的判定:两组对角分别相等的四边形是平行四边形,所以只有D符合条件.故选:D.【点睛】本题考查了平行四边形的判定,在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.6、B【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【详解】解:选项B能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形;选项ACD不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形;故选:B.【点睛】此题主要考查了中心对称图形定义,关键是找出对称中心.7、C【分析】由直角三角形的性质知:斜边上的中线等于斜边的一半,即可求出CD的长.【详解】解:∵在中,AB=10,CDAB边上的中线故选:C.【点睛】本题考查了直角三角形斜边上的中线的性质,在直角三角形中,斜边上的中线等于斜边的一半.8、B【分析】根据平行四边形的性质先求出∠B的度数,即可得到答案.【详解】解:∵四边形ABCD是平行四边形,ADBC∴∠B=180°-∠A=150°,∴∠B:∠A=5:1,故选B.【点睛】本题主要考查了平行四边形的性质,解题的关键在于能够熟练掌握平行四边形邻角互补.9、D【分析】直接利用多边形内角和定理分别分析得出答案.【详解】解:A.四边形的内角和与外角和相等,都等于360°,故本选项表述错误;B.四边形的内角和与外角和相等,都等于360°,故本选项表述错误;C.六四边形的内角和与外角和相等,都等于360°,故本选项表述错误;D.四边形的内角和与外角和相等,都等于360°,故本选项表述正确.故选:D.【点睛】本题考查了四边形内角和和外角和,解题关键是熟记四边形内角和与外角和都是360°.10、A【分析】关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数,根据原理直接作答即可.【详解】解:点关于原点对称的点的坐标是: 故选A【点睛】本题考查的是关于原点成中心对称的两个点的坐标规律,掌握“关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数”是解题的关键.二、填空题1、【分析】设这个正多边形有条边,再建立方程 解方程求解结合从边形的一个顶点出发可以引条对角线,从而可得答案.【详解】解:设这个正多边形有条边,则 解得: 所以从一个正八边形的一个顶点出发可以引条对角线,故答案为:【点睛】本题考查的是正多边形的内角和定理的应用,正多边形的对角线问题,掌握“多边形的内角和公式为边形的一个顶点出发可以引条对角线”是解本题的关键.2、【分析】再利用矩形的性质建立方程求解 从而可得答案.【详解】解: 四边形BHDG为菱形, AD=3AB, 矩形ABCD, 解得: 故答案为:【点睛】本题考查的是勾股定理的应用,矩形的性质,菱形的性质,利用图形的性质建立方程确定之间的关系是解本题的关键.3、6和8【分析】根据比例设两条对角线分别为3x、4x,再根据菱形的面积等于两对角线乘积的一半列式求出x的值即可.【详解】解:设两条对角线分别为3x、4x根据题意得,×3x•4x=24,解得x=2(负值舍去),∴菱形的两对角线的长分别为故答案为:6和8.【点睛】本题考查了菱形的面积,主要利用了菱形的对角线互相垂直平分的性质,菱形的面积的求法,需熟记.4、【分析】,由正方形的性质和勾股定理求出的长,可得的长,再求出的长,得出的长,进而可得结果.【详解】解:设四边形为正方形,点为的中点,四边形为正方形,故答案为:【点睛】本题考查了正方形的性质以及勾股定理,解题的关键是熟练掌握正方形的性质,由勾股定理求出的长.5、144°度
     【分析】先根据四边形的四个外角的度数之比分别求出四个外角,再根据多边形外角与内角的关系分别求出它们的内角,即可得到答案.【详解】解:∵四边形的四个外角的度数之比为1:2:3:4,∴四个外角的度数分别为:360°×360°×360°×360°×∴它最大的内角度数为:故答案为:144°.【点睛】本题考查了多边形的外角和,以及邻补角的定义,解题的关键是掌握多边形的外角和为360°,从而进行计算.三、解答题1、(1)图形见解析;(2)【分析】(1)利用尺规根据题意即可完成作图;
    (2)结合(1)根据等腰三角形的性质和三角形外角定理可得的度数.【详解】(1)如图,点E和点F即为所求;

     (2)∵,∠ABD=68°,
    ∴∠AEB=∠AEB=68°∴∠EAB=180°-68°-68°=44°,
    ∴∠EAD=90°-44°=46°,
    AF平分∠DAE
    ∴∠FAE=DAE=23°,
    【点睛】题考查了尺规作图-作角平分线,矩形的性质,熟练掌握5种基本作图是解决此类问题的关键.2、这个多边形的边数是6【分析】多边形的外角和是360°,内角和是它的外角和的2倍,则内角和为2×360=720度.n边形的内角和可以表示成(n-2)•180°,设这个多边形的边数是n,即可得到方程,从而求出边数.【详解】解:设这个多边形的边数为n由题意得:(n-2)×180°=2×360°,解得n=6,∴这个多边形的边数是6.【点睛】此题主要考查了多边形的外角和,内角和公式,做题的关键是正确把握内角和公式为:(n-2)•180°,外角和为360°.3、(1)见解析;(2)39【分析】(1)首先根据CFDEDFEF得出CFDE的中垂线,然后根据垂直平分线的性质得到CDCE,然后根据直角三角形斜边上的中线等于斜边的一半得到CDAD,即可证明ADCE(2)由(1)得CDCE=AB=5,由勾股定理求出BC,然后结合三角形的面积公式进行计算.【详解】(1)证明:∵DFEF  ∴点FDE的中点 又∵CFDE  CFDE的中垂线CDCE又∵在RtABC中,∠ACB=90°,CD是斜边AB上的中线CD=ADADCE(2)解:由(1)得CDCE==5 AB=10  ∴在RtABC中,BC==8EB=EC+BC=13【点睛】此题考查了垂直平分线的判定和性质,直角三角形性质,三角形面积公式等知识,解题的关键是熟练掌握垂直平分线的判定和性质,直角三角形性质,三角形面积公式.4、(1)见解析;(2)菱形,见解析【分析】(1)根据等腰三角形的性质得到AB=BC,∠A=∠C,由旋转的性质得到A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,根据全等三角形的判定定理得到△BCF≌△BA1D
    (2)由(1)可知∠=∠=∠A=∠C=a,B=B=AB=BC通过证明∠FBC=∠可得 BC,利用∠EC=∠C=180°推出∠EC+∠=180°  得到BCE从而证明四边形为平行四边形再利用B=BC可证明四边形为菱形.【详解】(1)证明:∵等腰三角形ABC旋转角a得到∴∠BD=∠FBC=a=∠=∠A=∠C   B=B=AB=BCBCF(ASA)    (2)解:四边形为菱形理由:∵C=a由(1)可知∠=∠=∠A=∠C=a    B=B=AB=BC又∵ ∠BD=∠FBC=a ∴∠FBC=∠BC  ∴∠EC=∠C=180°∴∠EC+∠=180°  BCE∴四边形为平行四边形又∵B=BC∴ 四边形为菱形【点睛】本题考查了旋转的性质,全等三角形的判定和性质,等腰三角形的性质,正确的理解题意是解题的关键.5、(1)(1,4);(2)45°;(3)见解析
     【分析】(1)过点AAEx轴于E,过点BBFx轴于F,证明△OAE≌△BOF得到OF=AEBF=OE,再由点A的坐标为(-4,1),得到OF=AE=1,BF=OE=4,则点B的坐标为(1,4);(2)延长MPAN交于H,证明△APH≌△BPM得到AH=BM,再由A点坐标为(-4,1),B点坐标为(1,4),得到AN=4,OM=4,BM=1,ON=1,则HN=AN-AH=AN-BM=3,MN=OM-ON=3,瑞出HN=MN,即可得到∠NHM=∠NMH=45°,即∠PMO=45°;(3)连接OPAM,取BM中点G,连接GP,则GP是△ABM的中位线,AMGP,证明△PQO≌△PGB得到∠OPQ=∠BPG,再由∠OPQ+∠BPQ=90°,得到∠BPG+∠BPQ=90°,即∠GPQ=90°,则PQPG,即PGAM【详解】解:(1)如图所示,过点AAEx轴于E,过点BBFx轴于F∴∠AEO=∠OFB=90°,∴∠AOE+∠OAE=90°,又∵∠AOB=90°,∴∠AOE+∠BOF=90°,∴∠OAE=∠BOFAO=OB∴△OAE≌△BOFAAS),OF=AEBF=OE∵点A的坐标为(-4,1),OF=AE=1,BF=OE=4,∴点B的坐标为(1,4);(2)如图所示,延长MPAN交于HAHy轴,BMy轴,BM∥AN∴∠MBP=∠HAP,∠AHP=∠BMP∵点PAB的中点,AP=BP∴△APH≌△BPMAAS),AH=BMA点坐标为(-4,1),B点坐标为(1,4),AN=4,OM=4,BM=1,ON=1,HN=AN-AH=AN-BM=3,MN=OM-ON=3,HN=MN∴∠NHM=∠NMH=45°,即∠PMO=45°;(3)如图所示,连接OPAM,取BM中点G,连接GPGP是△ABM的中位线,AM∥GPQON的中点,GBM的中点,ON=BM=1,PAB中点,△AOB是等腰直角三角形,∠AOB=90°,,∠OAB=∠OBA=45°,∠OPB=90°∴∠PAO=∠POA=45°,∴∠POB=45°,∵∠NAO+∠NOA=90°,∠NOA+∠BON=90°,∴∠NAO=∠BON∵∠OAB=∠POB=45°,∴∠BAN+∠NAO=∠POQ+∠BON,即∠BAN=∠POQ由(2)得∠GBP=∠BAN∴∠GBP=∠QOP∴△PQO≌△PGBSAS),∴∠OPQ=∠BPG∵∠OPQ+∠BPQ=90°,∴∠BPG+∠BPQ=90°,即∠GPQ=90°,PQPGPGAM【点睛】本题主要考查了坐标与图形,全等三角形的性质与判定,三角形中位线定理,等腰直角三角形的性质与判定等等,解题的关键在于能够熟练掌握全等三角形的性质与判定条件. 

    相关试卷

    初中数学北京课改版八年级下册第十五章 四边形综合与测试同步测试题:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试同步测试题,共23页。

    初中数学北京课改版八年级下册第十五章 四边形综合与测试当堂检测题:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试当堂检测题,共29页。试卷主要包含了下列∠A等内容,欢迎下载使用。

    数学第十五章 四边形综合与测试课后测评:

    这是一份数学第十五章 四边形综合与测试课后测评,共30页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map