搜索
    上传资料 赚现金
    英语朗读宝

    2022年京改版八年级数学下册第十五章四边形定向测试试卷

    2022年京改版八年级数学下册第十五章四边形定向测试试卷第1页
    2022年京改版八年级数学下册第十五章四边形定向测试试卷第2页
    2022年京改版八年级数学下册第十五章四边形定向测试试卷第3页
    还剩33页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020-2021学年第十五章 四边形综合与测试练习

    展开

    这是一份2020-2021学年第十五章 四边形综合与测试练习,共36页。试卷主要包含了以下分别是回收等内容,欢迎下载使用。
    京改版八年级数学下册第十五章四边形定向测试
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,已知正方形ABCD的边长为6,点E,F分别在边AB,BC上,BE=CF=2,CE与DF交于点H,点G为DE的中点,连接GH,则GH的长为(  )

    A. B. C.4.5 D.4.3
    2、如图,在矩形ABCD中,点O为对角线BD的中点,过点O作线段EF交AD于F,交BC于E,OB=EB,点G为BD上一点,满足EG⊥FG,若∠DBC=30°,则∠OGE的度数为(  )

    A.30° B.36° C.37.5° D.45°
    3、如图,在平面直角坐标系中,矩形OABC的点A和点C分别落在x轴和y轴正半轴上,AO=4,直线l:y=3x+2经过点C,将直线l向下平移m个单位,设直线可将矩形OABC的面积平分,则m的值为(  )

    A.7 B.6 C.4 D.8
    4、以下分别是回收、节水、绿色包装、低碳4个标志,其中是中心对称图形的是( ).
    A. B. C. D.
    5、下列各曲线是在平面直角坐标系xOy中根据不同的方程绘制而成的,其中是中心对称图形的是( )
    A. B.
    C. D.
    6、一个多边形纸片剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为( )
    A.14或15或16 B.15或16或17 C.15或16 D.16或17
    7、菱形ABCD的周长是8cm,∠ABC=60°,那么这个菱形的对角线BD的长是(  )
    A.cm B.2cm C.1cm D.2cm
    8、如图,在长方形ABCD中,AB=10cm,点E在线段AD上,且AE=6cm,动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,同时点Q在线段BC上.以vcm/s的速度由点B向点C运动,当△EAP与△PBQ全等时,v的值为(  )

    A.2 B.4 C.4或 D.2或
    9、如图,菱形OABC在平面直角坐标系中的位置如图所示,∠AOC=45°,OA=,则点C的坐标为(  )

    A.(,1) B.(1,1) C.(1,) D.(+1,1)
    10、如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中的度数是( )

    A.180° B.220° C.240° D.260°
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、坐标平面内的点P(m,﹣2020)与点Q(2021,n)关于原点对称,则m+n=_________.
    2、如图,平面直角坐标系中,有,,三点,以A,B,O三点为顶点的平行四边形的另一个顶点D的坐标为______.

    3、过多边形的一个顶点作对角线,可将多边形分成5个三角形,则多边形的边数是______.
    4、如图,在正方形ABCD中,AB=2,取AD的中点E,连接EB,延长DA至F,使EF=EB,以线段AF为边作正方形AFGH,点H在线段AB上,则的值是 _____.

    5、如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则cos∠EFG的值为________.

    三、解答题(5小题,每小题10分,共计50分)
    1、在菱形ABCD中,∠ABC=60°,P是直线BD上一动点,以AP为边向右侧作等边APE(A,P,E按逆时针排列),点E的位置随点P的位置变化而变化.
    (1)如图1,当点P在线段BD上,且点E在菱形ABCD内部或边上时,连接CE,则BP与CE的数量关系是 ,BC与CE的位置关系是 ;
    (2)如图2,当点P在线段BD上,且点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由;
    (3)当点P在直线BD上时,其他条件不变,连接BE.若AB=2,BE=2,请直接写出APE的面积.

    2、如图,四边形ABCD是一个菱形绿草地,其周长为40m,∠ABC=120°,在其内部有一个矩形花坛EFGH,其四个顶点恰好在菱形ABCD各边中点,现准备在花坛中种植茉莉花,其单价为30元/m2,则需投资资金多少元?( 取1.732)

    3、如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.

    (1)在图1中,画一个三边长都是有理数的直角三角形;
    (2)在图2中,画一个以BC为斜边的直角三角形,使它们的三边长都是无理数且都不相等;
    (3)在图3中,画一个正方形,使它的面积是10.
    4、已知长方形ABCO,O为坐标原点,B的坐标为(8,6),点A,C分别在坐标轴上,P是线段BC上的动点,设PC=m.

    (1)已知点D在第一象限且是直线y=2x+6上的一点,设D点横坐标为n,则D点纵坐标可用含n的代数式表示为   ,此时若△APD是等腰直角三角形,求点D的坐标;
    (2)直线y=2x+b过点(3,0),请问在该直线上,是否存在第一象限的点D使△APD是等腰直角三角形?若存在,请直接写出这些点的坐标,若不存在,请说明理由.
    5、如图,等腰△ABC中,AB=AC,∠BAC=90°,BE平分∠ABC交AC于E,过C作CD⊥BE于D,
    (1)如图1,求证:CD=BE
    (2)如图2,过点A作AF⊥BE,写出AF,BD,CD之间的数量关系并说明理由.


    -参考答案-
    一、单选题
    1、A
    【分析】
    根据正方形的四条边都相等可得BC=DC,每一个角都是直角可得∠B=∠DCF=90°,然后利用“边角边”证明△CBE≌△DCF,得∠BCE=∠CDF,进一步得∠DHC=∠DHE=90°,从而知GH=DE,利用勾股定理求出DE的长即可得出答案.
    【详解】
    解:∵四边形ABCD为正方形,
    ∴∠B=∠DCF=90°,BC=DC,
    在△CBE和△DCF中,

    ∴△CBE≌△DCF(SAS),
    ∴∠BCE=∠CDF,
    ∵∠BCE+∠DCH=90°,
    ∴∠CDF+∠DCH=90°,
    ∴∠DHC=∠DHE=90°,
    ∵点G为DE的中点,
    ∴GH=DE,
    ∵AD=AB=6,AE=AB﹣BE=6﹣2=4,
    ∴,
    ∴GH=.
    故选A.
    【点睛】
    本题主要考查了正方形的性质,全等三角形的性质与判定,勾股定理,直角三角形斜边上的中线,解题的关键在于能够熟练掌握相关知识进行求解.
    2、C
    【分析】
    根据矩形和平行线的性质,得;根据等腰三角形和三角形内角和性质,得;根据全等三角形性质,通过证明,得;根据直角三角形斜边中线、等腰三角形、三角形内角和性质,推导得,再根据余角的性质计算,即可得到答案.
    【详解】
    ∵矩形ABCD


    ∵OB=EB,


    ∵点O为对角线BD的中点,

    和中



    ∵EG⊥FG,即



    故选:C.
    【点睛】
    本题考查了矩形、平行线、全等三角形、等腰三角形、三角形内角和、直角三角形的知识;解题的关键是熟练掌握矩形、全等三角形、等腰三角形、直角三角形斜边中线的性质,从而完成求解.
    3、A
    【分析】
    如图所示,连接AC,OB交于点D,先求出C和A的坐标,然后根据矩形的性质得到D是AC的中点,从而求出D点坐标为(2,1),再由当直线经过点D时,可将矩形OABC的面积平分,进行求解即可.
    【详解】
    解:如图所示,连接AC,OB交于点D,
    ∵C是直线与y轴的交点,
    ∴点C的坐标为(0,2),
    ∵OA=4,
    ∴A点坐标为(4,0),
    ∵四边形OABC是矩形,
    ∴D是AC的中点,
    ∴D点坐标为(2,1),
    当直线经过点D时,可将矩形OABC的面积平分,
    由题意得平移后的直线解析式为,
    ∴,
    ∴,
    故选A.

    【点睛】
    本题主要考查了一次函数与几何综合,一次函数的平移,矩形的性质,解题的关键在于能够熟知过矩形中心的直线平分矩形面积.
    4、C
    【分析】
    根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,即可判断出答案.
    【详解】
    解:A、此图形不是中心对称图形,故本选项不符合题意;
    B、此图形不是中心对称图形,故此选项不符合题意;
    C、此图形是中心对称图形,故此选项符合题意;
    D、此图形不是中心对称图形,故此选项不符合题意.
    故选:C.
    【点睛】
    此题主要考查了中心对称图形的定义,关键是找出图形的对称中心.
    5、C
    【分析】
    利用中心对称图形的定义:旋转能与自身重合的图形即为中心对称图形,即可判断出答案.
    【详解】
    解:A、不是中心对称图形,故A错误.
    B、不是中心对称图形,故B错误.
    C、是中心对称图形,故C正确.
    D、不是中心对称图形,故D错误.
    故选:C.
    【点睛】
    本题主要是考查了中心对称图形的定义,熟练掌握中心对图形的定义,是解决该题的关键.
    6、A
    【分析】
    由题意先根据多边形的内角和公式先求出新多边形的边数,然后再根据截去一个角的情况进行讨论即可.
    【详解】
    解:设新多边形的边数为n,
    则(n-2)•180°=2340°,
    解得:n=15,
    ①若截去一个角后边数增加1,则原多边形边数为14,
    ②若截去一个角后边数不变,则原多边形边数为15,
    ③若截去一个角后边数减少1,则原多边形边数为16,
    所以多边形的边数可以为14,15或16.
    故选:A.
    【点睛】
    本题考查多边形内角与外角,熟练掌握多边形的内角和公式(n-2)•180°(n为边数)是解题的关键.
    7、B
    【分析】
    由菱形的性质得AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,再证△ABC是等边三角形,得AC=AB=2(cm),则OA=1(cm),然后由勾股定理求出OB=(cm),即可求解.
    【详解】
    解:∵菱形ABCD的周长为8cm,
    ∴AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,
    ∵∠ABC=60°,
    ∴△ABC是等边三角形,
    ∴AC=AB=2cm,
    ∴OA=1(cm),
    在Rt△AOB中,由勾股定理得:OB===(cm),
    ∴BD=2OB=2(cm),
    故选:B.

    【点睛】
    此题考查了菱形的性质,勾股定理,等边三角形的性质和判定,解题的关键是熟练掌握菱形的性质,勾股定理,等边三角形的性质和判定方法.
    8、D
    【分析】
    根据题意可知当△EAP与△PBQ全等时,有两种情况:①当EA=PB时,△APE≌△BQP,②当AP=BP时,△AEP≌△BQP,分别按照全等三角形的性质及行程问题的基本数量关系求解即可.
    【详解】
    解:当△EAP与△PBQ全等时,有两种情况:
    ①当EA=PB时,△APE≌△BQP(SAS),
    ∵AB=10cm,AE=6cm,
    ∴BP=AE=6cm,AP=4cm,
    ∴BQ=AP=4cm;
    ∵动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,
    ∴点P和点Q的运动时间为:4÷2=2s,
    ∴v的值为:4÷2=2cm/s;
    ②当AP=BP时,△AEP≌△BQP(SAS),
    ∵AB=10cm,AE=6cm,
    ∴AP=BP=5cm,BQ=AE=6cm,
    ∵5÷2=2.5s,
    ∴2.5v=6,
    ∴v=.
    故选:D.
    【点睛】
    本题考查矩形的性质及全等三角形的判定与性质等知识点,注意数形结合和分类讨论并熟练掌握相关性质及定理是解题的关键.
    9、B
    【分析】
    作CD⊥x轴,根据菱形的性质得到OC=OA=,在Rt△OCD中,根据勾股定理求出OD的值,即可得到C点的坐标.
    【详解】
    :作CD⊥x轴于点D,

    则∠CDO=90°,
    ∵四边形OABC是菱形,OA=,
    ∴OC=OA=,
    又∵∠AOC=45°,
    ∴∠OCD=90°-∠AOC=90°-45°=45°,
    ∴∠DOC=∠OCD,
    ∴CD=OD,
    在Rt△OCD中,OC=,CD2+OD2=OC2,
    ∴2OD2=OC2=2,
    ∴OD2=1,
    ∴OD=CD=1(负值舍去),
    则点C的坐标为(1,1),
    故选:B.
    【点睛】
    此题考查了菱形的性质、等腰直角三角形的性质以及勾股定理,根据勾股定理和等腰直角三角形的性质求出OD=CD=1是解决问题的关键.
    10、C
    【分析】
    根据四边形内角和为360°及等边三角形的性质可直接进行求解.
    【详解】
    解:由题意得:等边三角形的三个内角都为60°,四边形内角和为360°,
    ∴;
    故选C.
    【点睛】
    本题主要考查多边形内角和及等边三角形的性质,熟练掌握多边形内角和及等边三角形的性质是解题的关键.
    二、填空题
    1、-1
    【分析】
    根据“关于原点对称的点,横坐标与纵坐标都互为相反数”求出m、n的值,然后相加计算即可得解.
    【详解】
    解:∵点P(m,-2020)与点Q(2021,n)关于原点对称,
    ∴m=﹣2021,n=2020,
    ∴m+n=﹣1.
    故答案为:-1.
    【点睛】
    本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.
    2、(9,4)、(-3,4)、(3,-4)
    【分析】
    根据平行四边形的性质得出AD=BO=6,AD∥BO,根据平行线得出A和D的纵坐标相等,根据B的横坐标和BO的值即可求出D的横坐标.
    【详解】
    ∵平行四边形ABCD的顶点A、B、O的坐标分别为(3,4)、(6,0)、(0,0),
    ∴AD=BO=6,AD∥BO,
    ∴D的横坐标是3+6=9,纵坐标是4,
    即D的坐标是(9,4),
    同理可得出D的坐标还有(-3,4)、(3,-4).
    故答案为:(9,4)、(-3,4)、(3,-4).
    【点睛】
    本题考查了坐标与图形性质和平行四边形的性质,注意:平行四边形的对边平行且相等.
    3、7
    【分析】
    根据n边形从一个顶点出发可引出(n﹣3)条对角线,可组成(n﹣2)个三角形,依此可得n的值.
    【详解】
    解:设多边形的边数为n,
    由题意得,n﹣2=5,
    解得:n=7,
    即这个多边形是七边形.
    故答案为:7.
    【点睛】
    本题考查了多边形的对角线,求对角线条数时,直接代入边数n的值计算,而计算边数时,需利用方程思想,解方程求n.
    4、
    【分析】
    设,由正方形的性质和勾股定理求出的长,可得的长,再求出的长,得出的长,进而可得结果.
    【详解】
    解:设,
    四边形为正方形,
    ,,
    点为的中点,




    四边形为正方形,


    故答案为:.
    【点睛】
    本题考查了正方形的性质以及勾股定理,解题的关键是熟练掌握正方形的性质,由勾股定理求出的长.
    5、
    【分析】
    根据题意连接BE,连接AE交FG于O,如图,利用菱形的性质得△BDC为等边三角形,∠ADC=120°,再在在Rt△BCE中计算出BE=CE=,然后证明BE⊥AB,利用勾股定理计算出AE,从而得到OA的长;设AF=x,根据折叠的性质得到FE=FA=x,在Rt△BEF中利用勾股定理得到(2-x)2+()2=x2,解得x,然后在Rt△AOF中利用勾股定理计算出OF,再利用余弦的定义求解即可.
    【详解】
    解:连接BE,连接AE交FG于O,如图,

    ∵四边形ABCD为菱形,∠A=60°,
    ∴△BDC为等边三角形,∠ADC=120°,
    ∵E点为CD的中点,
    ∴CE=DE=1,BE⊥CD,
    在Rt△BCE中,BE=CE=,
    ∵AB∥CD,
    ∴BE⊥AB,
    ∴.
    ∴,
    设AF=x,
    ∵菱形纸片翻折,使点A落在CD的中点E处,
    ∴FE=FA=x,
    ∴BF=2-x,
    在Rt△BEF中,(2-x)2+()2=x2,
    解得:,
    在Rt△AOF中,,
    ∴.
    故答案为: .
    【点睛】
    本题考查了折叠的性质以及菱形的性质,注意掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
    三、解答题
    1、(1)BP=CE,CE⊥BC;(2)仍然成立,见解析;(3)31
    【分析】
    (1)连接AC,根据菱形的性质和等边三角形的性质证明△BAP≌△CAE即可证得结论;
    (2)(1)中的结论成立,用(1)中的方法证明△BAP≌△CAE即可;
    (3)分两种情形:当点P在BD的延长线上时或点P在线段DB的延长线上时,连接AC交BD于点O,由∠BCE=90°,根据勾股定理求出CE的长即得到BP的长,再求AO、PO、PD的长及等边三角形APE的边长可得结论.
    【详解】
    解:(1)如图1,连接AC,延长CE交AD于点H,

    ∵四边形ABCD是菱形,
    ∴AB=BC,
    ∵∠ABC=60°,
    ∴△ABC是等边三角形,
    ∴AB=AC,∠BAC=60°;
    ∵△APE是等边三角形,
    ∴AP=AE,∠PAE=60°,
    ∴∠BAP=∠CAE=60°﹣∠PAC,
    ∴△BAP≌△CAE(SAS),
    ∴BP=CE;
    ∵四边形ABCD是菱形,
    ∴∠ABP=∠ABC=30°,
    ∴∠ABP=∠ACE=30°,
    ∵∠ACB=60°,
    ∴∠BCE=60°+30°=90°,
    ∴CE⊥BC;
    故答案为:BP=CE,CE⊥BC;
    (2)(1)中的结论:BP=CE,CE⊥AD 仍然成立,理由如下:
    如图2中,连接AC,设CE与AD交于H,

    ∵菱形ABCD,∠ABC=60°,
    ∴△ABC和△ACD都是等边三角形,
    ∴AB=AC,∠BAD=120°,∠BAP=120°+∠DAP,
    ∵△APE是等边三角形,
    ∴AP=AE,∠PAE=60°,
    ∴∠CAE=60°+60°+∠DAP=120°+∠DAP,
    ∴∠BAP=∠CAE,
    ∴△ABP≌△ACE(SAS),
    ∴BP=CE,∠ACE=∠ABD=30°,
    ∴∠DCE=30°,
    ∵∠ADC=60°,
    ∴∠DCE+∠ADC=90°,
    ∴∠CHD=90°,
    ∴CE⊥AD;
    ∴(1)中的结论:BP=CE,CE⊥AD 仍然成立;
    (3)如图3中,当点P在BD的延长线上时,连接AC交BD于点O,连接CE,BE,作EF⊥AP于F,

    ∵四边形ABCD是菱形,
    ∴AC⊥BD BD平分∠ABC,
    ∵∠ABC=60°,AB=2,
    ∴∠ABO=30°,
    ∴AO=AB=,OB=AO=3,
    ∴BD=6,
    由(2)知CE⊥AD,
    ∵AD∥BC,
    ∴CE⊥BC,
    ∵BE=2,BC=AB=2,
    ∴CE==8,
    由(2)知BP=CE=8,
    ∴DP=2,
    ∴OP=5,
    ∴AP===2,
    ∵△APE是等边三角形,
    ∴S△AEP=×(2)2=7,
    如图4中,当点P在DB的延长线上时,同法可得AP===2,

    ∴S△AEP=×(2)2=31,
    【点睛】
    此题是四边形的综合题,重点考查菱形的性质、等边三角形的性质、全等三角形的判定与性质、勾股定理等知识点,解题的关键是正确地作出解题所需要的辅助线,将菱形的性质与三角形全等的条件联系起来,此题难度较大,属于考试压轴题.
    2、2598元
    【分析】
    根据菱形的性质,先求出菱形的一条对角线,由勾股定理求出另一条对角线的长,由三角形的中位线定理,求出矩形的两条边,再求出矩形的面积,最后求得投资资金.
    【详解】
    连接BD,AD相交于点O,如图:

    ∵四边形ABCD是一个菱形,
    ∴AC⊥BD,
    ∵∠ABC=120°,
    ∴∠A=60°,
    ∴△ABD为等边三角形,
    ∵菱形的周长为40m,
    ∴菱形的边长为10m,
    ∴BD=10m,BO=5m,
    ∴在Rt△AOB中,m,
    ∴AC=2OA=m,
    ∵E、F、G、H分别是AB、BC、CD、DA的中点,
    ∴EH=BD =5m,EF=AC=5m,
    ∴S矩形=5×5=50m2,
    则需投资资金50×30=1500×1.732≈2598元
    【点睛】
    本题考查了二次根式的应用,勾股定理,菱形的性质,等边三角形的判定与性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记各性质与定理是解题的关键.
    3、(1)见解析;(2)见解析;(3)见解析
    【分析】
    (1)如图,AB=4,BC=3,,利用勾股定理逆定理即可得到△ABC是直角三角形;
    (2)如图, ,,利用勾股定理逆定理即可得到△ABC是直角三角形;
    (3)如图, ,则,∠ABC=90°,即可得到四边形ABCD是正方形,.
    【详解】
    解:(1)如图所示,AB=4,BC=3,,
    ∴,
    ∴△ABC是直角三角形;


    (2)如图所示, ,
    ∴,
    ∴△ABC是直角三角形;


    (3)如图所示,, ,
    ∴,
    ∴∠ABC=90°,
    ∴四边形ABCD是正方形,
    ∴.

    【点睛】
    本题主要考查了有理数与无理数,正方形的判定,勾股定理和勾股定理的逆定理,熟知相关知识是解题的关键.
    4、(1)点D(4,14);(2)存在第一象限的点D使△APD是等腰直角三角形,点D的坐标或.
    【分析】
    (1)过点D作DE⊥y轴于E,PF⊥y轴于F,设D点横坐标为n,点D在第一象限且是直线y=2x+6上的一点,可得点D(n,2n+6),根据△APD是等腰直角三角形,可得∠EDA=∠FAP,可证△EDA≌△FAP(AAS),可得AE=PF,ED=FA,再证四边形AFPB为矩形,得出点D(n,14),根据点D在直线y=2x+6上,求出n=4即可;
    (2)直线y=2x+b过点(3,0),求出b =-6,设点D(x, 2x-6),分三种情况当∠ADP=90°,AD=DP,△ADP为等腰直角三角形,证明△EDA≌△FPD(AAS),再证四边形OCFE为矩形,EF=OC=8,得出DE+DF=x+2x-14=8;当∠APD=90°,AP=DP,△ADP为等腰直角三角形,先证△ABP≌△PFD(AAS),得出CF=CB+PF-PB=6+8-(x-8)=22-x=2x-6;当∠PAD=90°,AP=AD,△ADP为等腰直角三角形,先证四边形AFPB为矩形,得出PF=AB=8,再证△APF≌△DAE(AAS),得出求解方程即可
    【详解】
    解:(1)过点D作DE⊥y轴于E,PF⊥y轴于F,
    设D点横坐标为n,点D在第一象限且是直线y=2x+6上的一点,
    ∴x=n,y=2n+6,
    ∴点D(n,2n+6),
    ∵△APD是等腰直角三角形,
    ∴DA=AP,∠DAP=90°,
    ∴∠DAE+∠FAP=180°-∠DAP=90°,
    ∵DE⊥y轴,PF⊥y轴,
    ∴∠DEA=∠AFP=90°,
    ∴∠EDA+∠DAE=90°,
    ∴∠EDA=∠FAP,
    在△EDA和△FAP中,

    ∴△EDA≌△FAP(AAS),
    ∴AE=PF,ED=FA,
    ∵四边形OABC为矩形,B的坐标为(8,6),
    ∴AB=OC=8,OA=BC=6,∠FAB=∠ABP=90°,
    ∵∠AFP=90°,
    ∴四边形AFPB为矩形,
    ∴PF=AB=8,
    ∴EA=FP=8,
    ∴OE=OA+AE=6+8=14,
    ∴点D(n,14),
    ∵点D在直线y=2x+6上,
    ∴14=2n+6,,
    ∴n=4,
    ∴点D(4,14);


    (2)直线y=2x+b过点(3,0),
    ∴0=6+b,
    ∴b =-6,
    ∴直线y=2x-6,
    设点D(x, 2x-6),
    过点D作EF⊥y轴,交y轴于E,交CB延长线于F,
    要使△ADP为等腰直角三角形,
    当∠ADP=90°,AD=DP,△ADP为等腰直角三角形,
    ∴∠ADE+∠FDP=180°-∠ADP=90°,
    ∵DE⊥y轴,PF⊥y轴,
    ∴∠DEA=∠AFP=90°,
    ∴∠EDA+∠DAE=90°,
    ∴∠EAD=∠FDP,
    在△EDA和△FPD中,

    ∴△EDA≌△FPD(AAS),
    ∴AE=DF=2x-6-8=2x-14,ED=FP=x,
    ∵四边形OABC为矩形,AB=OC=8,OA=BC=6,
    ∴∠OCF=90°,
    ∴四边形OCFE为矩形,EF=OC=8,
    ∴DE+DF=x+2x-14=8,
    解得x=,
    ∴,
    ∴点D;


    当∠APD=90°,AP=DP,△ADP为等腰直角三角形,
    ∴∠APB+∠DPF=90°,
    过D作DF⊥射线CB于F,
    ∴∠DFP=90°,
    ∵四边形OABC为矩形,
    ∴AB=OC=8,OA=CB=6,∠ABP=90°,
    ∴∠BAP+∠APB=90°,
    ∴∠BAP=∠FPD,
    在△ABP和△PFD中,

    ∴△ABP≌△PFD(AAS),
    ∴BP=FD=x-8,AB=PF=8,
    ∴CF=CB+PF-PB=6+8-(x-8)=22-x=2x-6,
    解得x=,
    ∴,
    ∴点D;


    当∠PAD=90°,AP=AD,△ADP为等腰直角三角形,
    ∴∠EAD +∠PAF=90°,
    过D作DE⊥y轴于E,过P作PF⊥y轴于F,
    ∴∠DEA=∠PFA=90°,
    ∴∠FAP+∠FPA=90°,
    ∴∠FPA=∠EAD,
    ∵四边形OABC为矩形,
    ∴AB=OC=8,OA=CB=6,∠ABP=∠BAO=90°,
    ∵∠PFA=90°,
    ∴四边形AFPB为矩形,
    ∴PF=AB=8,
    在△APF和△DAE中,

    ∴△APF≌△DAE(AAS),
    ∴FP=AE=8,AF=DE=6-m,
    ∴OE=OA+AE=6+8=14,
    ∴,
    解得:,
    ∵PC=m≥0,
    ∴AF=6-m≤6<10,
    ∴此种情况不成立;


    综合存在第一象限的点D使△APD是等腰直角三角形,点D的坐标或.
    【点睛】
    本题考查等腰直角三角形先证,三角形全等判定与性质,待定系数法求一次函数解析式,分类讨论思想,一次函数图像上点的特征,矩形的判定与性质,掌握等腰直角三角形先证,三角形全等判定与性质,待定系数法求一次函数解析式,分类讨论思想,一次函数图像上点的特征,矩形的判定与性质是解题关键.
    5、(1)证明见解析;(2)BD= CD+2AF,理由见解析
    【分析】
    (1)延长BA与CD的延长线交于点G,先证明△ABE≌△ACG得到BE=CG,由BD是∠ABC的角平分线,得到∠GBD=∠CBD,即可证明△BDG≌△BDC得到CD=GD,则;
    (2)如图所示,连接AD,取BE中点H,连接AH,由直角三角形斜边上的中线等于斜边的一半可得,,则,再由∠BAC=90°,AB=AC,得到∠ABC=45°,根据BD平分∠ABC,即可推出∠AHF=∠ABH+∠BAH=45°,从而得到AF=HF,则DH=2AF,由此即可推出BD=BH+HD=BH+2AF=CD+2AF.
    【详解】
    解:(1)如图所示,延长BA与CD的延长线交于点G,
    ∵∠BAC=90°,
    ∴∠CAG=90°,
    ∵CD⊥BE,
    ∴∠EDC=∠GDB=∠BAE=90°,
    又∵∠AEB=∠DEC,
    ∴∠ABE=∠DCE,
    在△ABE和△ACG中,

    ∴△ABE≌△ACG(ASA),
    ∴BE=CG,
    ∵BD是∠ABC的角平分线,
    ∴∠GBD=∠CBD,
    在△BDG和△BDC中,

    ∴△BDG≌△BDC(ASA),
    ∴CD=GD,
    ∴;

    (2)BD= CD+2AF,理由如下:
    如图所示,连接AD,取BE中点H,连接AH,
    由(1)得CD=GD,,
    ∵△BAE和△CAG都是直角三角形,H为BE中点,D为CG中点,
    ∴,,
    ∴,
    ∴∠ABH=∠BAH,
    ∵∠BAC=90°,AB=AC,
    ∴∠ABC=45°,
    又∵BD平分∠ABC,
    ∴∠ABH=∠BAH=22.5°,
    ∴∠AHF=∠ABH+∠BAH=45°,
    ∵AF⊥DH,
    ∴HF=DF,∠AFH=90°,
    ∴∠HAF=45°,
    ∴AF=HF,
    ∴DH=2AF,
    ∴BD=BH+HD=BH+2AF=CD+2AF.

    【点睛】
    .本题主要考查了全等三角形的性质与判定,角平分线的性质,等腰三角形的性质与判定,直角三角形斜边上的中线,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.

    相关试卷

    数学第十五章 四边形综合与测试课后练习题:

    这是一份数学第十五章 四边形综合与测试课后练习题,共26页。

    初中数学北京课改版八年级下册第十五章 四边形综合与测试一课一练:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试一课一练,共29页。

    2021学年第十五章 四边形综合与测试随堂练习题:

    这是一份2021学年第十五章 四边形综合与测试随堂练习题,共26页。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map