![2022年京改版八年级数学下册第十五章四边形专项攻克练习题(无超纲)第1页](http://img-preview.51jiaoxi.com/2/3/12705652/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年京改版八年级数学下册第十五章四边形专项攻克练习题(无超纲)第2页](http://img-preview.51jiaoxi.com/2/3/12705652/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2022年京改版八年级数学下册第十五章四边形专项攻克练习题(无超纲)第3页](http://img-preview.51jiaoxi.com/2/3/12705652/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
初中数学北京课改版八年级下册第十五章 四边形综合与测试达标测试
展开
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试达标测试,共30页。试卷主要包含了下列∠A,下列命题是真命题的是,下列说法中,正确的是,如图,M等内容,欢迎下载使用。
京改版八年级数学下册第十五章四边形专项攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列图形中,既是轴对称图形,又是中心对称图形的是( )
A. B.
C. D.
2、如图,小明从点A出发沿直线前进10m到达点B,向左转,后又沿直线前进10m到达点C,再向左转30°后沿直线前进10m到达点...照这样走下去,小明第一次回到出发点A,一共走了( )米.
A.80 B.100 C.120 D.140
3、如图,在中,,,AD平分,E是AD中点,若,则CE的长为( )
A. B. C. D.
4、下列∠A:∠B:∠C:∠D的值中,能判定四边形ABCD是平行四边形的是( )
A.1:2:3:4 B.1:4:2:3
C.1:2:2:1 D.3:2:3:2
5、下列命题是真命题的是( )
A.五边形的内角和是720° B.三角形的任意两边之和大于第三边
C.内错角相等 D.对角线互相垂直的四边形是菱形
6、如图,在平面直角坐标系中,点A是x轴正半轴上的一个动点,点C是y轴正半轴上的点,于点C.已知,.点B到原点的最大距离为( )
A.22 B.18 C.14 D.10
7、下列说法中,正确的是( )
A.若,,则
B.90′=1.5°
C.过六边形的每一个顶点有4条对角线
D.疫情防控期间,要掌握进入校园人员的体温是否正常,可采用抽样调查
8、如图,M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P,则∠APN的度数是( )
A.120° B.118° C.110° D.108°
9、下图是文易同学答的试卷,文易同学应得( )
A.40分 B.60分 C.80分 D.100分
10、如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E,若∠1=40°,则∠2的度数为( )
A.25° B.20° C.15° D.10°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,矩形的对角线、相交于点,分别以点、为圆心,长为半径画弧,分别交、于点、.若,,则图中阴影部分的面积为_______.(结果保留)
2、点D、E分别是△ABC边AB、AC的中点,已知BC=12,则DE=_____
3、一个多边形,每个外角都是,则这个多边形是________边形.
4、如图,正方形ABCD中,AD= ,已知点E是边AB上的一动点(不与A、B重合)将△ADE沿DE对折,点A的对应点为P,当△APB是等腰三角形时,AE=______ .(温馨提示:∵ ,∴ )
5、如图,M,N分别是矩形ABCD的边AD,AB上的点,将矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,连接MC,若AB=8,AD=16,BE=4,则MC的长为________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,已知在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,点E是边BC延长线上一点,连接AE、DE,过点C作CF⊥DE于点F,且DF=EF.
(1)求证:AD=CE.
(2)若CD=5,AC=6,求△AEB的面积.
2、如图,的对角线与相交于点O,过点B作BPAC,过点C作CPBD,与相交于点P.
(1)试判断四边形的形状,并说明理由;
(2)若将改为矩形,且,其他条件不变,求四边形的面积;
(3)要得到矩形,应满足的条件是_________(填上一个即可).
3、如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.
(1)在图1中,画一个三边长都是有理数的直角三角形;
(2)在图2中,画一个以BC为斜边的直角三角形,使它们的三边长都是无理数且都不相等;
(3)在图3中,画一个正方形,使它的面积是10.
4、问题背景:课外学习小组在一次学习研讨中,得到了如下两个命题:
①如图(1),在正△ABC中,M、N分别是AC、AB上的点,BM与CN相交于点O,若∠BON=60°,则BM=CN;
②如图(2),在正方形ABCD中,M、N分别是CD、AD上的点,BM与CN相交于点O,若∠BON=90°,则BM=CN.
然后运用类似的思想提出了如下命题:
③如图(3),在正五边形ABCDE中,M、N分别是CD、DE上的点,BM与CN相交于点O,若∠BON=108°,则BM=CN.
任务要求:
(1)请你从①②③三个命题中选择一个进行证明;
(2)请你继续完成下面的探索;
①在正n(n≥3)边形ABCDEF…中,M、N分别是CD、DE上的点,BM与CN相交于点O,试问当∠BON等于多少度时,结论BM=CN成立(不要求证明);
②如图(4),在正五边形ABCDE中,M、N分别是DE、AE上的点,BM与CN相交于点O,∠BON=108°时,试问结论BM=CN是否成立.若成立,请给予证明;若不成立,请说明理由.
5、(1)如图1,在△ABC中,BE平分∠ABC,CE平分∠ACD,试说明:∠E∠A;
(拓展应用)
(2)如图2,在四边形ABDC中,对角线AD平分∠BAC.
①若∠ACD=130°,∠BCD=50°,∠CBA=40°,求∠CDA的度数;
②若∠ABD+∠CBD=180°,∠ACB=82°,写出∠CBD与∠CAD之间的数量关系.
-参考答案-
一、单选题
1、B
【详解】
解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;
B、既是轴对称图形,又是中心对称图形,故本选项符合题意;
C、不是轴对称图形,是中心对称图形,故本选项不符合题意;
D、不是轴对称图形,是中心对称图形,故本选项不符合题意;
故选:B.
【点睛】
本题考查了轴对称图形和中心对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键.
2、C
【分析】
由小明第一次回到出发点A,则小明走过的路程刚好是一个多边形的周长,由多边形的外角和为,每次的转向的角度的大小刚好是多边形的一个外角,则先求解多边形的边数,从而可得答案.
【详解】
解:由 可得:小明第一次回到出发点A,
一个要走米,
故选C
【点睛】
本题考查的是多边形的外角和的应用,掌握“由多边形的外角和为得到一共要走12个10米”是解本题的关键.
3、B
【分析】
根据三角形内角和定理求出∠BAC,根据角平分线的定义∠DAB=∠B,求出AD,根据直角三角形的性质解答即可.
【详解】
解:∵∠ACB=90°,∠B=30°,
∴∠BAC=90°-30°=60°,
∵AD平分∠BAC,
∴∠DAB=∠BAC=30°,
∴∠DAB=∠B,
∴AD=BD=a,
在Rt△ACB中,E是AD中点,
∴CE=AD=,
故选: B.
【点睛】
本题考查的是直角三角形的性质、角平分线的定义,掌握直角三角形斜边上的中线是斜边的一半是解题的关键.
4、D
【分析】
两组对角分别相等的四边形是平行四边形,所以∠A和∠C是对角,∠B和∠D是对角,对角的份数应相等.
【详解】
解:根据平行四边形的判定:两组对角分别相等的四边形是平行四边形,所以只有D符合条件.
故选:D.
【点睛】
本题考查了平行四边形的判定,在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.
5、B
【分析】
利用多边形的内角和公式、三角形的三边关系、平行线的性质及菱形的判定分别判断后即可确定正确的选项.
【详解】
解:A、五边形的内角和为540°,故原命题错误,是假命题,不符合题意;
B、三角形的任意两边之和大于第三边,正确,是真命题,符合题意;
C、两直线平行,内错角相等,故原命题错误,是假命题,不符合题意;
D、对角线互相垂直的平行四边形是菱形,故原命题错误,是假命题,不符合题意,
故选:B.
【点睛】
本题考查了命题与定理的知识,解题的关键是了解多边形的内角和公式、三角形的三边关系、平行线的性质及菱形的判定等知识,难度不大.
6、B
【分析】
首先取AC的中点E,连接BE,OE,OB,可求得OE与BE的长,然后由三角形三边关系,求得点B到原点的最大距离.
【详解】
解:取AC的中点E,连接BE,OE,OB,
∵∠AOC=90°,AC=16,
∴OE=CEAC=8,
∵BC⊥AC,BC=6,
∴BE10,
若点O,E,B不在一条直线上,则OB<OE+BE=18.
若点O,E,B在一条直线上,则OB=OE+BE=18,
∴当O,E,B三点在一条直线上时,OB取得最大值,最大值为18.
故选:B
【点睛】
此题考查了直角三角形斜边上的中线的性质以及三角形三边关系.此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
7、B
【分析】
由等式的基本性质可判断A,由 可判断B,由过边形的一个顶点可作条对角线可判断C,由全面调查与抽样调查的含义可判断D,从而可得答案.
【详解】
解:若,则故A不符合题意;
90′=故B符合题意;
过六边形的每一个顶点有3条对角线,故C不符合题意;
疫情防控期间,要掌握进入校园人员的体温是否正常,事关重大,一定采用全面调查,故D不符合题意;
故选:B.
【点睛】
本题考查的是等式的基本性质,角度的换算,多边形的对角线问题,全面调查与抽样调查的含义,掌握以上基础知识是解本题的关键.
8、D
【分析】
由五边形的性质得出AB=BC,∠ABM=∠C,证明△ABM≌△BCN,得出∠BAM=∠CBN,由∠BAM+∠ABP=∠APN,即可得出∠APN=∠ABC,即可得出结果.
【详解】
解:∵五边形ABCDE为正五边形,
∴AB=BC,∠ABM=∠C,
在△ABM和△BCN中
,
∴△ABM≌△BCN(SAS),
∴∠BAM=∠CBN,
∵∠BAM+∠ABP=∠APN,
∴∠CBN+∠ABP=∠APN=∠ABC=
∴∠APN的度数为108°;
故选:D.
【点睛】
本题考查了全等三角形的判定与性质、多边形的内角和定理;熟练掌握五边形的形状,证明三角形全等是解决问题的关键.
9、B
【分析】
分别根据菱形的判定与性质、正方形的判定、矩形的判定与性质进行判断即可.
【详解】
解:(1)根据对角线互相垂直的平行四边形是菱形可知(1)是正确的;
(2)根据根据对角线互相垂直且相等的平行四边形是正方形可知(2)是正确的;
(3)根据对角线相等的平行四边形是矩形可知(3)是正确的;
(4)根据菱形的对角线互相垂直,不一定相等可知(4)是错误的;
(5)根据矩形是中心对称图形,对角线的交点是对称中心,并且矩形的对角线相等且互相平分可知,矩形的对称中心到四个顶点的距离相等是正确的,
∴文易同学答对3道题,得60分,
故选:B.
【点睛】
本题考查菱形的判定与性质、正方形的判定、矩形的判定与性质,熟练掌握特殊四边形的判定与性质是解答的关键
10、D
【分析】
根据矩形的性质,可得∠ABD=40°,∠DBC=50°,根据折叠可得∠DBC′=∠DBC=50°,最后根据∠2=∠DB C′−∠DBA进行计算即可.
【详解】
解:∵四边形ABCD是矩形,
∴∠ABC=90°,CD∥AB,
∴∠ABD=∠1=40°,
∴∠DBC=∠ABC-∠ABD=50°,
由折叠可得∠DB C′=∠DBC=50°,
∴∠2=∠DB C′−∠DBA=50°−40°=10°,
故选D.
【点睛】
本题考查了长方形性质,平行线性质,折叠性质,角的有关计算的应用,关键是求出∠DBC′和∠DBA的度数.
二、填空题
1、##
【分析】
由图可知,阴影部分的面积是扇形AEO和扇形CFO的面积之和.
【详解】
解:∵四边形是矩形,
∴,,,
∴,,
∴图中阴影部分的面积为:.
故答案为:.
【点睛】
本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.
2、6
【分析】
根据三角形的中位线等于第三边的一半进行计算即可.
【详解】
解:∵D、E分别是△ABC边AB、AC的中点,
∴DE是△ABC的中位线,
∵BC=12,
∴DE=BC=6,
故答案为6.
【点睛】
本题主要考查了三角形中位线定理,熟知三角形中位线定理是解题的关键.
3、六6
【分析】
根据正多边形的性质,边数等于360°除以每一个外角的度数.
【详解】
∵一个多边形的每个外角都是60°,
∴n=360°÷60°=6,
故答案为:六.
【点睛】
本题主要考查了利用多边形的外角和,熟练掌握多边形外角和360°是解决问题的关键.
4、2
【分析】
当AP=AB时,结合正方形的性质可得AB=AD=AP,由折叠的性质可得AD=DP,推出△APD为等边三角形,得到∠ADE=30°,然后根据勾股定理进行计算;当AP=PB时,过P作PF⊥AB于点F,过P作PG⊥AD于点G,则四边形AFPG为矩形,得到PG=AF,由等腰三角形的性质可得AF=AB,结合正方形以及折叠的性质可得PG=AF=PD,则∠GDP=30°,进而求得∠PEF=30°,设PF=x,则PE=AE=2x,EF=x,然后根据AE+EF=AF=PD进行计算.
【详解】
解:当AP=AB时,
∵四边形ABCD为正方形,
∴AB=AD,
∴AP=AD.
∵ 将△ADE沿DE对折, 得到△PDE,
∴AD=DP,
∴AP=AD=DP,
∴△APD为等边三角形,
∴∠ADP=60°,
∴∠ADE=30°,
∴,
∴设,则,
∴在中,,即,
∴解得:;
当AP=PB时,过P作PF⊥AB于点F,过P作PG⊥AD于点G,
∵AD⊥AB,
∴四边形AFPG为矩形,
∴PG=AF.
∵AP=PB,PF⊥AB,
∴AF=AB=.
∵AB=AD=DP,
∴PG=AF=PD=,
如图,作DP的中点M,连接GM,
∵
∴
又∵
∴
∴是等边三角形
∴
∵
∴∠GDP=30°.
∵∠DAE=∠DPE=90°,∠ADP=30°,
∴∠AEP=150°,
∴∠PEF=30°.
设PF=x,则PE=AE=2x,EF=x,
∴AE+EF=(2+)x= ,
∴x=2-3,
∴AE=4-6.
故答案为:2或4-6.
【点睛】
此题考查了正方形的性质,勾股定理,等腰三角形的性质和判定等知识,解题的关键是熟练掌握正方形的性质,勾股定理,等腰三角形的性质和判定方法.
5、10
【分析】
过E作EF⊥AD于F,根据矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,得出△ANM≌△ENM,可得AM=EM,根据矩形ABCD,得出∠B=∠A=∠D=90°,再证四边形ABEF为矩形,得出AF=BE=4,FE=AB=8,设AM=EM=m,FM=m-4,根据勾股定理,即,解方程m=10即可.
【详解】
解:过E作EF⊥AD于F,
∵矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,
∴△ANM≌△ENM,
∴AM=EM,
∵矩形ABCD,
∴∠B=∠A=∠D=90°,
∵FE⊥AD,
∴∠AFE=∠B=∠A=90°,
∴四边形ABEF为矩形,
∴AF=BE=4,FE=AB=8,
设AM=EM=m,FM=m-4
在Rt△FEM中,根据勾股定理,即,
解得m=10,
∴MD=AD-AM=16-10=6,
在Rt△MDC中,
∴MC=.
故答案为10.
【点睛】
本题考查折叠轴对称性质,矩形判定与性质,勾股定理,掌握折叠轴对称性质,矩形判定与性质,勾股定理是解题关键.
三、解答题
1、(1)见解析;(2)39
【分析】
(1)首先根据CF⊥DE,DF=EF得出CF为DE的中垂线,然后根据垂直平分线的性质得到CD=CE,然后根据直角三角形斜边上的中线等于斜边的一半得到CD=AD,即可证明AD=CE;
(2)由(1)得CD=CE=AB=5,由勾股定理求出BC,然后结合三角形的面积公式进行计算.
【详解】
(1)证明:∵DF=EF
∴点F为DE的中点
又∵CF⊥DE
∴CF为DE的中垂线
∴CD=CE
又∵在Rt△ABC中,∠ACB=90°,
CD是斜边AB上的中线
∴CD==AD
∴AD=CE
(2)解:由(1)得CD=CE==5
∴AB=10
∴在Rt△ABC中,BC==8
∴EB=EC+BC=13
∴ .
【点睛】
此题考查了垂直平分线的判定和性质,直角三角形性质,三角形面积公式等知识,解题的关键是熟练掌握垂直平分线的判定和性质,直角三角形性质,三角形面积公式.
2、(1)平行四边形,理由见解析;(2)四边形的面积为24;(3)AB=BC或AC⊥BD等(答案不唯一)
【分析】
(1)利用平行四边形的判定:两组对边分别平行的四边形是平行四边形,即可证明.
(2)利用矩形的性质,得到对角线互相平分,进而证明四边形是菱形,分别求出菱形的对角线长度,利用对角线乘积的一半,求解面积即可.
(3)添加的条件只要可以证明即可得到矩形.
【详解】
解:(1)四边形BPCO是平行四边形,
∵BP∥AC,CP∥BD,
∴四边形BPCO是平行四边形.
(2)连接OP.
∵四边形ABCD是矩形,
∴OB=BD,OC=AC,AC=BD,∠ABC=90°,
∴OB=OC.
又四边形BPCO是平行四边形,
∴□BPCO是菱形.
∴OP⊥BC.
又∵AB⊥BC,
∴OP∥AB.
又∵AC∥BP,
四边形是平行四边形,
∴OP=AB=6.
∴S菱形BPCO=.
(3)AB=BC或AC⊥BD等(答案不唯一).
当AB=BC时,为菱形,此时有:,利用含有的平行四边形为矩形,即可得到矩形,
当AC⊥BD时,利用含有的平行四边形为矩形,即可得到矩形.
【点睛】
本题主要是考查了平行四边形、矩形和菱形的判定和性质,熟练掌握特殊四边形的判定和性质,是求解该类问题的关键.
3、(1)见解析;(2)见解析;(3)见解析
【分析】
(1)如图,AB=4,BC=3,,利用勾股定理逆定理即可得到△ABC是直角三角形;
(2)如图, ,,利用勾股定理逆定理即可得到△ABC是直角三角形;
(3)如图, ,则,∠ABC=90°,即可得到四边形ABCD是正方形,.
【详解】
解:(1)如图所示,AB=4,BC=3,,
∴,
∴△ABC是直角三角形;
(2)如图所示, ,
∴,
∴△ABC是直角三角形;
(3)如图所示,, ,
∴,
∴∠ABC=90°,
∴四边形ABCD是正方形,
∴.
【点睛】
本题主要考查了有理数与无理数,正方形的判定,勾股定理和勾股定理的逆定理,熟知相关知识是解题的关键.
4、(1)选①或②或③,证明见详解;(2)①当时,结论成立;②当时,还成立,证明见详解.
【分析】
(1)命题①,根据等边三角形的性质及各角之间的等量代换可得:,然后依据全等三角形的判定定理可得:,再由全等三角形的性质即可证明;命题②,根据正方形的性质及各角之间的等量代换可得:,然后依据全等三角形的判定定理可得:,再由全等三角形的性质即可证明;命题③,根据正五边形的性质及各角之间的等量代换可得:,然后依据全等三角形的判定定理可得:,再由全等三角形的性质即可证明;
(2)①根据(1)中三个命题的结果,得出相应规律,即可得解;
②连接BD、CE,根据全等三角形的判定定理和性质可得:, ,,,利用各角之间的关系及等量代换可得:, ,继续利用全等三角形的判定定理和性质即可得出证明.
【详解】
解:(1)如选命题①,证明:如图所示:
∵ ,
∴ ,
∵ ,
∴ ,
在 与ΔCAN中,
,
∴ ,
∴ ;
如选命题②,
证明:如图所示:
∵ ,
∴ ,
∵ ,
∴ ,
在 与ΔCDN中,
,
∴ ,
∴ ;
如选命题③,
证明:如图所示:
∵ ,
∴ ,
∵ ,
∴ ,
在 与ΔCDN中,
,
∴ ,
∴ ;
(2)①根据(1)中规律可得:当时,结论成立;
②答:当时,成立.
证明:如图所示,连接BD、CE,
在和中,
,
∴ ,
∴ ,,,
∵ ,
∴ ,
∵ ,.
∴ ,
又∵ ,
∴ ,
在和中,
,
∴ ,
∴ .
【点睛】
题目主要考查全等三角形的判定定理和性质,正多边形的内角,等腰三角形的性质,三角形内角和定理等,理解题意,结合相应图形证明是解题关键.
5、(1)见解析;(2)①∠CDA=20°;②∠CAD+41°=∠CBD.
【分析】
(1)由三角形外角的性质可得∠ACD=∠A+∠ABC,∠ECD=∠E+∠EBC;由角平分线的性质可得,,利用等量代换,即可求得∠A与∠E的关系;
(2)①根据三角形的内角和定理和角平分线的定义即可解答;②设∠CBD=a,根据已知条件得到∠ABC=180°-2a,根据三角形的内角和定理和角平分线的定义即可解答.
【详解】
(1)证明:∵∠ACD是△ABC的外角
∴∠ACD=∠A+∠ABC
∵CE平分∠ACD
∴
又∵∠ECD=∠E+∠EBC
∴
∵BE平分∠ABC
∴
∴
∴;
(2)①∵∠ACD=130°,∠BCD=50°
∴∠ACB=∠ACD﹣∠BCD=130°﹣50°=80°
∵∠CBA=40°
∴∠BAC=180°﹣∠ACB﹣∠ABC=180°﹣80°﹣40°=60°
∵AD平分∠BAC
∴
∴∠CDA=180°﹣∠CAD﹣∠ACD=20°;
②∠CAD+41°=∠CBD
设∠CBD=α
∵∠ABD+∠CBD=180°
∴∠ABC=180°﹣2α
∵∠ACB=82°
∴∠CAB=180°﹣∠ABC﹣∠ACB=180°﹣(180°﹣2α)﹣82°=2α﹣82°
∵AD平分∠BAC
∴∠CAD=∠CAB=α﹣41°
∴∠CAD+41°=∠CBD.
【点睛】
本题主要考查了多边形的内角与外角、三角形内角和定理、角平分线等知识点,掌握三角形内角和是180°是解答本题的关键.
相关试卷
这是一份数学八年级下册第十五章 四边形综合与测试达标测试,共28页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十五章 四边形综合与测试同步练习题,共27页。试卷主要包含了如图,M等内容,欢迎下载使用。
这是一份初中数学第十五章 四边形综合与测试巩固练习,共25页。