初中数学北京课改版八年级下册第十五章 四边形综合与测试课时作业
展开
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课时作业,共28页。试卷主要包含了平行四边形中,,则的度数是等内容,欢迎下载使用。
京改版八年级数学下册第十五章四边形月考 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,不是中心对称图形的是( )A. B. C. D.2、古典园林中的窗户是中国传统建筑装饰的重要组成部分,一窗一姿容,一窗一景致.下列窗户图案中,是中心对称图形的是( )A. B.C. D.3、下列图案中既是轴对称图形又是中心对称图形的是( )A. B. C. D.4、勾股定理是人类早期发现并证明的重要数学定理之一,是数形结合的重要纽带.数学家欧几里得利用如图验证了勾股定理:以直角三角形ABC的三条边为边长向外作正方形ACHI,正方形ABED,正方形BCGF,连接BI,CD,过点C作CJ⊥DE于点J,交AB于点K.设正方形ACHI的面积为S1,正方形BCGF的面积为S2,长方形AKJD的面积为S3,长方形KJEB的面积为S4,下列结论:①BI=CD;②2S△ACD=S1;③S1+S4=S2+S3;④+=.其中正确的结论有( )A.1个 B.2个 C.3个 D.4个5、下列图标中,既是中心对称图形又是轴对称图形的是( )A. B. C. D.6、如图,把一张长方形纸片ABCD沿对角线AC折叠,点B的对应点为点B′,AB′与DC相交于点E,则下列结论正确的是 ( )A.∠DAB′=∠CAB′ B.∠ACD=∠B′CD C.AD=AE D.AE=CE7、如图,A,B,C是某社区的三栋楼,若在AC中点D处建一个5G基站,其覆盖半径为300 m,则这三栋楼中在该5G基站覆盖范围内的是( )A.A,B,C都不在 B.只有BC.只有A,C D.A,B,C8、一个多边形每个外角都等于36°,则这个多边形是几边形( )A.7 B.8 C.9 D.109、平行四边形中,,则的度数是( )A. B. C. D.10、如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E,若∠1=40°,则∠2的度数为( )A.25° B.20° C.15° D.10°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在一张矩形纸片ABCD中,AB=30cm,将纸片对折后展开得到折痕EF.点P为BC边上任意一点,若将纸片沿着DP折叠,使点C恰好落在线段EF的三等分点上,则BC的长等于_________cm.
2、如图,在矩形ABCD中,对角线AC,BD相交于O,EF过点O分别交AB,CD于E,F,已知AB=8cm,AD=5cm,那么图中阴影部分面积为_____cm2.3、如图,正方形ABCD中,AD= ,已知点E是边AB上的一动点(不与A、B重合)将△ADE沿DE对折,点A的对应点为P,当△APB是等腰三角形时,AE=______ .(温馨提示:∵ ,∴ )4、将△ABC纸片沿DE按如图的方式折叠.若∠C=50°,∠1=85°,则∠2等于______.5、如果一个矩形较短的边长为5cm,两条对角线的夹角为60°,则这个矩形的对角线长是_________cm.三、解答题(5小题,每小题10分,共计50分)1、如图,□ABCD中,点E、F分别在AB、CD上,且BE=DF.求证:AF=EC.
2、已知:在中,点、点、点分别是、、的中点,连接、.(1)如图1,若,求证:四边形为菱形;(2)如图2,过作交延长线于点,连接,,在不添加任何辅助线的情况下,请直接写出图中所有与面积相等的平行四边形.
3、已知:如图,,,AD是BC上的高线,CE是AB边上的中线,于G.(1)若,求线段AC的长;(2)求证:.4、(1)先化简,再求值:(a+b)(a﹣b)﹣a(a﹣2b),其中a=1,b=2;(2)如图,菱形ABCD中,AB=AC,E、F分别是BC、AD的中点,连接AE、CF.证明:四边形AECF是矩形.5、如图,在中,,D是边上的一点,过D作交于点E,,连接交于点F.(1)求证:是的垂直平分线;(2)若点D为的中点,且,求的长. -参考答案-一、单选题1、C【详解】解:选项A是中心对称图形,故A不符合题意;选项B是中心对称图形,故B不符合题意;选项C不是中心对称图形,故C符合题意;选项D是中心对称图形,故D不符合题意;故选C【点睛】本题考查的是中心对称图形的识别,掌握“中心对称图形的定义判断中心对称图形”是解本题的关键,中心对称图形的定义:把一个图形绕某点旋转后能够与自身重合,则这个图形是中心对称图形.2、C【分析】根据中心对称图形的定义进行逐一判断即可.【详解】解:A、不是中心对称图形,故此选项不符合题意;B、不是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项符合题意;D、不是中心对称图形,故此选项不符合题意;故选C.【点睛】本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.3、B【详解】A.是轴对称图形,不是中心对称图形,故不符合题意;B. 既是轴对称图形,又是中心对称图形,故符合题意;C.是轴对称图形,不是中心对称图形,故不符合题意;D.既不是轴对称图形,也不是中心对称图形,故不符合题意;故选B【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.4、C【分析】根据SAS证△ABI≌△ADC即可得证①正确,过点B作BM⊥IA,交IA的延长线于点M,根据边的关系得出S△ABI=S1,即可得出②正确,过点C作CN⊥DA交DA的延长线于点N,证S1=S3即可得证③正确,利用勾股定理可得出S1+S2=S3+S4,即能判断④不正确.【详解】解:①∵四边形ACHI和四边形ABED都是正方形,∴AI=AC,AB=AD,∠IAC=∠BAD=90°,∴∠IAC+∠CAB=∠BAD+∠CAB,即∠IAB=∠CAD,在△ABI和△ADC中,,∴△ABI≌△ADC(SAS),∴BI=CD,故①正确;②过点B作BM⊥IA,交IA的延长线于点M,∴∠BMA=90°,∵四边形ACHI是正方形,∴AI=AC,∠IAC=90°,S1=AC2,∴∠CAM=90°,又∵∠ACB=90°,∴∠ACB=∠CAM=∠BMA=90°,∴四边形AMBC是矩形,∴BM=AC,∵S△ABI=AI•BM=AI•AC=AC2=S1,由①知△ABI≌△ADC,∴S△ACD=S△ABI=S1,即2S△ACD=S1,故②正确;③过点C作CN⊥DA交DA的延长线于点N,∴∠CNA=90°,∵四边形AKJD是矩形,∴∠KAD=∠AKJ=90°,S3=AD•AK,∴∠NAK=∠AKC=90°,∴∠CNA=∠NAK=∠AKC=90°,∴四边形AKCN是矩形,∴CN=AK,∴S△ACD=AD•CN=AD•AK=S3,即2S△ACD=S3,由②知2S△ACD=S1,∴S1=S3,在Rt△ACB中,AB2=BC2+AC2,∴S3+S4=S1+S2,又∵S1=S3,∴S1+S4=S2+S3, 即③正确;④在Rt△ACB中,BC2+AC2=AB2,∴S3+S4=S1+S2,∴,故④错误;综上,共有3个正确的结论,故选:C.【点睛】本题主要考查勾股定理,正方形的性质,矩形性质,全等三角形的判定和性质等知识,熟练掌握勾股定理和全等三角形的判定和性质是解题的关键.5、B【分析】由题意直接根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得出答案.【详解】解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;
B.既是轴对称图形,又是中心对称图形,故本选项符合题意;
C.不是轴对称图形,是中心对称图形,故本选项不符合题意;
D.是轴对称图形,不是中心对称图形,故本选项不符合题意.
故选:B.【点睛】本题考查中心对称图形与轴对称图形的概念,注意掌握把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.6、D【分析】根据翻折变换的性质可得∠BAC=∠CAB′,根据两直线平行,内错角相等可得∠BAC=∠ACD,从而得到∠ACD=∠CAB′,然后根据等角对等边可得AE=CE,从而得解.【详解】解:∵矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,
∴∠BAC=∠CAB′,
∵AB∥CD,
∴∠BAC=∠ACD,
∴∠ACD=∠CAB′,
∴AE=CE,
∴结论正确的是D选项.
故选D.【点睛】本题考查了翻折变换的性质,平行线的性质,矩形的对边互相平行,等角对等边的性质,熟记各性质并准确识图是解题的关键.7、D【分析】根据三角形边长然后利用勾股定理逆定理可得为直角三角形,由直角三角形斜边上的中线性质即可得.【详解】解:如图所示:连接BD,∵,,,∴,∴为直角三角形,∵D为AC中点,∴,∵覆盖半径为300 ,∴A、B、C三个点都被覆盖,故选:D.【点睛】题目主要考查勾股定理逆定理,直角三角形斜边中线的性质等,理解题意,综合运用两个定理是解题关键.8、D【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【详解】解:∵360°÷36°=10,∴这个多边形的边数是10.故选D.【点睛】本题考查了多边形内角与外角,外角和的大小与多边形的边数无关,熟练掌握多边形内角与外角是解题关键.9、B【分析】根据平行四边形对角相等,即可求出的度数.【详解】解:如图所示,∵四边形是平行四边形,∴,∴,∴.故:B.【点睛】本题考查了平行四边形的性质,解题的关键是掌握平行四边形的性质.10、D【分析】根据矩形的性质,可得∠ABD=40°,∠DBC=50°,根据折叠可得∠DBC′=∠DBC=50°,最后根据∠2=∠DB C′−∠DBA进行计算即可.【详解】解:∵四边形ABCD是矩形,∴∠ABC=90°,CD∥AB,
∴∠ABD=∠1=40°,∴∠DBC=∠ABC-∠ABD=50°,
由折叠可得∠DB C′=∠DBC=50°,
∴∠2=∠DB C′−∠DBA=50°−40°=10°,
故选D.【点睛】本题考查了长方形性质,平行线性质,折叠性质,角的有关计算的应用,关键是求出∠DBC′和∠DBA的度数.二、填空题1、或【分析】分为将纸片沿纵向对折,和沿横向对折两种情况,利用折叠的性质,以及勾股定理解答即可【详解】如图:当将纸片沿纵向对折根据题意可得:为的三等分点在中有如图:当将纸片沿横向对折根据题意得:,在中有为的三等分点故答案为:或【点睛】本题考查了矩形的性质,折叠的性质,以及勾股定理解直角三角形,解题关键是分两种情况作出折痕,考虑问题应全面,不应丢解.2、10【分析】利用矩形性质,求证,将阴影部分的面积转为的面积,最后利用中线平分三角形的面积,求出的面积,即可得到阴影部分的面积.【详解】解:四边形为矩形,,,, , 在与中,, 阴影部分的面积最后转化为了的面积,中,, 平分, 阴影部分的面积:,故答案为:10.【点睛】本题主要是考查了矩形的性质以全等三角形的判定与性质以及中线平分三角形面积,熟练利用矩形性质,证明三角形全等,将阴影部分面积转化为其他图形的面积,这是解决本题的关键.
3、2【分析】当AP=AB时,结合正方形的性质可得AB=AD=AP,由折叠的性质可得AD=DP,推出△APD为等边三角形,得到∠ADE=30°,然后根据勾股定理进行计算;当AP=PB时,过P作PF⊥AB于点F,过P作PG⊥AD于点G,则四边形AFPG为矩形,得到PG=AF,由等腰三角形的性质可得AF=AB,结合正方形以及折叠的性质可得PG=AF=PD,则∠GDP=30°,进而求得∠PEF=30°,设PF=x,则PE=AE=2x,EF=x,然后根据AE+EF=AF=PD进行计算.【详解】解:当AP=AB时, ∵四边形ABCD为正方形, ∴AB=AD, ∴AP=AD. ∵ 将△ADE沿DE对折, 得到△PDE, ∴AD=DP, ∴AP=AD=DP, ∴△APD为等边三角形, ∴∠ADP=60°, ∴∠ADE=30°, ∴,∴设,则,∴在中,,即, ∴解得:; 当AP=PB时,过P作PF⊥AB于点F,过P作PG⊥AD于点G, ∵AD⊥AB, ∴四边形AFPG为矩形, ∴PG=AF. ∵AP=PB,PF⊥AB, ∴AF=AB=. ∵AB=AD=DP, ∴PG=AF=PD=,如图,作DP的中点M,连接GM,∵∴又∵∴∴是等边三角形∴∵∴∠GDP=30°. ∵∠DAE=∠DPE=90°,∠ADP=30°, ∴∠AEP=150°, ∴∠PEF=30°. 设PF=x,则PE=AE=2x,EF=x, ∴AE+EF=(2+)x= , ∴x=2-3, ∴AE=4-6. 故答案为:2或4-6.【点睛】此题考查了正方形的性质,勾股定理,等腰三角形的性质和判定等知识,解题的关键是熟练掌握正方形的性质,勾股定理,等腰三角形的性质和判定方法.4、【分析】利用三角形的内角和定理以及折叠的性质,求出,,利用四边形内角和为,即可求出∠2.【详解】解:在中,,在中,, 由折叠性质可知: ,四边形的内角和为,,,, , ,,且∠1=85°,,故答案为:.【点睛】本题主要是考查了三角形和四边形的内角和定理,熟练利用三角形内角和定理,求出两角之和,最后利用四边形的内角和求得某角的度数,这是解决该题的关键.5、10【分析】如图,由题意得:四边形为矩形,证明是等边三角形,结合矩形的性质可得答案.【详解】解:如图,由题意得:四边形为矩形, 是等边三角形, 故答案为:【点睛】本题考查的是等边三角形的判定与性质,矩形的性质,掌握“矩形的对角线相等且互相平分”是解本题的关键.三、解答题1、证明见解析【分析】先证明再证明可得四边形是平行四边形,于是可得结论.【详解】解: □ABCD, BE=DF,
∴AE=CF,AE//CF 四边形是平行四边形,【点睛】本题考查的是平行四边形的判定与性质,掌握“一组对边平行且相等的四边形是平行四边形”是解本题的关键.2、(1)证明见详解;(2)与面积相等的平行四边形有、、、.【分析】(1)根据三角形中位线定理可得:,,,,依据平行四边形的判定定理可得四边形DECF为平行四边形,再由,可得,依据菱形的判定定理即可证明;(2)根据三角形中位线定理及平行四边形的判定定理可得四边形DEFB、DECF、ADFE是平行四边形,根据平行四边形的性质得出与各平行四边形面积之间的关系,再根据平行四边形的判定得出四边形EGCF是平行四边形,根据其性质得到,根据等底同高可得,据此即可得出与面积相等的平行四边形.【详解】解:(1)∵D、E、F分别是AB、AC、BC的中点,∴,,,, ∴四边形DECF为平行四边形,∵,,∴四边形DECF为菱形;(2)∵D、E、F分别是AB、AC、BC的中点,∴,,,,, ,且,,,∴四边形DEFB、DECF、ADFE是平行四边形,∴,∵,,∴四边形EGCF是平行四边形,∴,∴,∴∴与面积相等的平行四边形有、、、.【点睛】题目主要考查菱形及平行四边形的判定定理和性质,中位线的性质等,熟练掌握平行四边形及菱形的判定定理及性质是解题关键.3、(1);(2)见解析【分析】(1)根据30°角所对直角边等于斜边的一半,得到AD=3,根据等腰直角三角形,得到CD=AD=3,根据勾股定理,得到AC的长即可;(2)根据斜边上的中线等于斜边的一半,得到DE=DC,根据等腰三角形三线合一性质,证明即可.【详解】(1),;(2)连接DE,,,,,,.【点睛】本题考查了30°角的性质,等腰直角三角形的性质,斜边上中线的性质,等腰三角形三线合一性质,熟练掌握性质是解题的关键.4、(1),0;(2)证明见解析.【分析】(1)根据整式的乘法运算法则先去括号,然后合并同类项化简,然后代入求解即可;(2)首先根据菱形的性质得到,,然后根据E、F分别是BC、AD的中点,得出,根据一组对边平行且相等证明出四边形AECF是平行四边形,然后根据等腰三角形三线合一的性质得出,即可证明出四边形AECF是矩形.【详解】(1)(a+b)(a﹣b)﹣a(a﹣2b)将a=1,b=2代入得:原式=;(2)如图所示,∵四边形ABCD是菱形,∴,且,又∵E、F分别是BC、AD的中点,∴,∴四边形AECF是平行四边形,∵AB=AC,E是BC的中点,∴,即,∴平行四边形AECF是矩形.【点睛】此题考查了整式的混合运算,代数式求值问题,菱形的性质和矩形的判定,解题的关键是熟练掌握整式的混合运算法则,菱形的性质和矩形的判定定理.5、(1)见解析;(2)6【分析】(1)由BC=BD,可得∠BCD=∠BDC,再由及,可得∠ECD=∠EDC,则有EC=ED,从而可得点B、E在线段CD的垂直平分线上,从而可得结论;(2)由D点是AB的中点及BC=BD,可得△BDC是等边三角形,从而由30度的直角三角形的性质可分别求得EC、BE,由AE=BE,即可求得AC的长.【详解】(1)∵BC=BD∴∠BCD=∠BDC,点B在线段CD的垂直平分线上∵,∴∠BCD+∠ECD=∠EDC+∠BDC∴∠ECD=∠EDC∴EC=ED∴点E在线段CD的垂直平分线上∴BE是线段CD的垂直平分线(2)D点是AB的中点,∠ACB=90゜∴CD是Rt△ABC斜边上的中线∴CD=BD∴CD=BC=BD∴△BDC是等边三角形∴∠BCD=∠DBC=60゜∴∠ECF=90゜-60゜=30゜由(1)知,BF⊥CD∴EC=2EF=2,∴BE=2EC=4∵DE⊥AB,点D为AB的中点∴AE=BE=4∴AC=AE+EC=4+2=6【点睛】本题考查了线段垂直平分线的性质定理和判定定理,直角三角形斜边上的中线的性质,30度角的直角三角形的性质,等边三角形的判定与性质;题目虽不难,但涉及的知识点比较多,灵活运用这些知识是解题的关键.
相关试卷
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课时训练,共29页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十五章 四边形综合与测试同步达标检测题,共21页。试卷主要包含了下列图形中,是中心对称图形的是,以下分别是回收等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试同步训练题,共21页。试卷主要包含了下列图案中,是中心对称图形的是,下列图形中不是中心对称图形的是,下列图形中,是中心对称图形的是等内容,欢迎下载使用。