搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年基础强化京改版八年级数学下册第十五章四边形同步训练试题(含答案解析)

    2021-2022学年基础强化京改版八年级数学下册第十五章四边形同步训练试题(含答案解析)第1页
    2021-2022学年基础强化京改版八年级数学下册第十五章四边形同步训练试题(含答案解析)第2页
    2021-2022学年基础强化京改版八年级数学下册第十五章四边形同步训练试题(含答案解析)第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北京课改版八年级下册第十五章 四边形综合与测试随堂练习题

    展开

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试随堂练习题,共22页。试卷主要包含了以下分别是回收,下列图形中,是中心对称图形的是等内容,欢迎下载使用。
    京改版八年级数学下册第十五章四边形同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下列∠A:∠B:∠C:∠D的值中,能判定四边形ABCD是平行四边形的是(    A.1:2:3:4 B.1:4:2:3C.1:2:2:1 D.3:2:3:22、如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是(    A.2.5 B.2 C. D.3、下列图案中既是轴对称图形又是中心对称图形的是(    A. B. C. D.4、以下分别是回收、节水、绿色包装、低碳4个标志,其中是中心对称图形的是(    ).A. B. C. D.5、如图,把一张长方形纸片ABCD沿对角线AC折叠,点B的对应点为点B′,AB′与DC相交于点E,则下列结论正确的是 (   A.∠DAB′=∠CAB B.∠ACD=∠BCD C.ADAE D.AECE6、如图,已知在正方形ABCD中,厘米,,点E在边AB上,且厘米,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上以a厘米/秒的速度由C点向D点运动,设运动时间为t秒.若存在at的值,使全等时,则t的值为(   
    A.2 B.2或1.5 C.2.5 D.2.5或27、一个多边形纸片剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为(    A.14或15或16 B.15或16或17 C.15或16 D.16或178、下列图形中,是中心对称图形的是(  )A. B.C. D.9、如图,四边形ABCD中,∠A=60°,AD=2,AB=3,点MN分别为线段BCAB上的动点(含端点,但点M不与点B重合),点EF分别为DMMN的中点,则EF长度的最大值为( )A. B. C. D.10、一个多边形每个外角都等于36°,则这个多边形是几边形(     A.7 B.8 C.9 D.10第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在中,上的两个动点,且,则的最小值是________.2、正五边形的一个内角与一个外角的比______.3、点DE分别是△ABCABAC的中点,已知BC=12,则DE=_____4、如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点FG分别在边ABAD上,则cos∠EFG的值为________.5、若点Pm,﹣2)与Q(﹣4,2)关于原点对称,则m=_____.三、解答题(5小题,每小题10分,共计50分)1、如图,在平行四边形ABCD中,,点EF分别是BCAD的中点.(1)求证:(2)当时,在不添加辅助线的情况下,直接写出图中等于的2倍的所有角.2、如图,将□ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F,连接ACBE(1)求证:四边形ABEC是平行四边形;(2)若∠AFC=2∠ADC,求证:四边形ABEC是矩形.3、如图,在平行四边形ABCD中,EBC的中点,连接AE并延长交DC的延长线于点F,连接BFAC,且ADAF(1)判断四边形ABFC的形状并证明;(2)若AB=3,∠ABC=60°,求EF的长.4、如图,已知在RtABC中,∠ACB=90°,CD是斜边AB上的中线,点E是边BC延长线上一点,连接AEDE,过点CCFDE于点F,且DFEF(1)求证:ADCE    (2)若CD=5,AC=6,求△AEB的面积.5、如图,点E为矩形ABCD外一点,AE = DE.求证:△ABE≌△DCE -参考答案-一、单选题1、D【分析】两组对角分别相等的四边形是平行四边形,所以∠A和∠C是对角,∠B和∠D是对角,对角的份数应相等.【详解】解:根据平行四边形的判定:两组对角分别相等的四边形是平行四边形,所以只有D符合条件.故选:D.【点睛】本题考查了平行四边形的判定,在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.2、D【分析】利用矩形的性质,求证明,进而在中利用勾股定理求出的长度,弧长就是的长度,利用数轴上的点表示,求出弧与数轴交点表示的实数即可.【详解】解:四边形OABC是矩形,中,由勾股定理可知:弧长为,故在数轴上表示的数为故选:【点睛】本题主要是考查了矩形的性质、勾股定理解三角形以及数轴上的点的表示,熟练利用矩形性质,得到直角三角形,然后通过勾股定理求边长,是解决该类问题的关键.3、B【详解】A.是轴对称图形,不是中心对称图形,故不符合题意;B. 既是轴对称图形,又是中心对称图形,故符合题意;C.是轴对称图形,不是中心对称图形,故不符合题意;D.既不是轴对称图形,也不是中心对称图形,故不符合题意;故选B【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.4、C【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,即可判断出答案.【详解】解:A、此图形不是中心对称图形,故本选项不符合题意;
    B、此图形不是中心对称图形,故此选项不符合题意;
    C、此图形是中心对称图形,故此选项符合题意;
    D、此图形不是中心对称图形,故此选项不符合题意.
    故选:C.【点睛】此题主要考查了中心对称图形的定义,关键是找出图形的对称中心.5、D【分析】根据翻折变换的性质可得∠BAC=∠CAB′,根据两直线平行,内错角相等可得∠BAC=∠ACD,从而得到∠ACD=∠CAB′,然后根据等角对等边可得AE=CE,从而得解.【详解】解:∵矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,
    ∴∠BAC=∠CAB′,
    ABCD
    ∴∠BAC=∠ACD
    ∴∠ACD=∠CAB′,
    AE=CE
    ∴结论正确的是D选项.
    故选D.【点睛】本题考查了翻折变换的性质,平行线的性质,矩形的对边互相平行,等角对等边的性质,熟记各性质并准确识图是解题的关键.6、D【分析】根据题意分两种情况讨论若△BPE≌△CQP,则BP=CQBE=CP;若△BPE≌△CPQ,则BP=CP=5厘米,BE=CQ=6厘米进行求解即可.【详解】解:当,即点Q的运动速度与点P的运动速度都是2厘米/秒,若△BPE≌△CQP,则BP=CQBE=CP
    AB=BC=10厘米,AE=4厘米,
    BE=CP=6厘米,
    BP=10-6=4厘米,
    ∴运动时间t=4÷2=2(秒);
    ,即点Q的运动速度与点P的运动速度不相等,
    BPCQ
    ∵∠B=∠C=90°,
    ∴要使△BPE与△OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可.
    ∴点PQ运动的时间t=(秒).综上t的值为2.5或2.
    故选:D.【点睛】本题主要考查正方形的性质以及全等三角形的判定,解决问题的关键是掌握正方形的四条边都相等,四个角都是直角;两边及其夹角分别对应相等的两个三角形全等.同时要注意分类思想的运用.7、A【分析】由题意先根据多边形的内角和公式先求出新多边形的边数,然后再根据截去一个角的情况进行讨论即可.【详解】解:设新多边形的边数为n
    则(n-2)•180°=2340°,
    解得:n=15,
    ①若截去一个角后边数增加1,则原多边形边数为14,
    ②若截去一个角后边数不变,则原多边形边数为15,
    ③若截去一个角后边数减少1,则原多边形边数为16,
    所以多边形的边数可以为14,15或16.
    故选:A.【点睛】本题考查多边形内角与外角,熟练掌握多边形的内角和公式(n-2)•180°(n为边数)是解题的关键.8、D【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【详解】A、不是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项不合题意;C、不是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项符合题意;故选:D.【点睛】本题考查了中心对称图形的概念,理解概念并知道一些常见的中心对称图形是关键.9、A【分析】根据三角形的中位线定理得出EF=DN,从而可知DN最大时,EF最大,因为NB重合时DN最大,此时根据勾股定理求得DN,从而求得EF的最大值. 连接DB,过点DDHABAB于点H,再利用直角三角形的性质和勾股定理求解即可;【详解】解:∵ED=EMMF=FNEF=DNDN最大时,EF最大, NB重合时DN=DB最大,Rt△ADH中, ∵∠A=60° AH=2×=1,DH=BH=ABAH=3﹣1=2, DB=EFmax=DB=EF的最大值为故选A【点睛】本题考查了三角形的中位线定理,勾股定理,含30度角的直角三角形的性质,利用中位线求得EF=DN是解题的关键.10、D【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【详解】解:∵360°÷36°=10,∴这个多边形的边数是10.故选D.【点睛】本题考查了多边形内角与外角,外角和的大小与多边形的边数无关,熟练掌握多边形内角与外角是解题关键.二、填空题1、【分析】过点AAD//BC,且ADMN,连接MD,则四边形ADMN是平行四边形,作点A关于BC的对称点A′,连接AA′交BC于点O,连接AM,三点DMA′共线时,最小为AD的长,利用勾股定理求AD的长度即可解决问题.【详解】解:过点AAD//BC,且ADMN,连接MD则四边形ADMN是平行四边形,
    MDANADMN
    作点A关于BC的对称点A′,连接A A′交BC于点O,连接AM
    AMAM
    AMANAMDM
    ∴三点DMA′共线时,AMDM最小为AD的长,
    AD//BCAOBC
    ∴∠DA=90°,
    ,,
    ∴BC=BOCOAO
    在Rt△AD中,由勾股定理得:
    D
    的最小是值为:故答案为:【点睛】本题主要考查了等腰三角形的性质,平行四边形的判定与性质,勾股定理等知识,构造平行四边形将AN转化为DM是解题的关键.2、【分析】根据公式分别求出一个内角与一个外角的度数,即可得到答案.【详解】解:正五边形的一个内角的度数为,正五边形的一个外角的度数为∴正五边形的一个内角与一个外角的比为故答案为:【点睛】此题考查了正五边形的内角度数及外角度数,熟记多边形的内角和与外角和公式是解题的关键.3、6【分析】根据三角形的中位线等于第三边的一半进行计算即可.【详解】解:∵DE分别是△ABCABAC的中点,DE是△ABC的中位线,BC=12,DE=BC=6,故答案为6.【点睛】本题主要考查了三角形中位线定理,熟知三角形中位线定理是解题的关键.4、【分析】根据题意连接BE,连接AEFGO,如图,利用菱形的性质得△BDC为等边三角形,∠ADC=120°,再在在RtBCE中计算出BE=CE=,然后证明BEAB,利用勾股定理计算出AE,从而得到OA的长;设AF=x,根据折叠的性质得到FE=FA=x,在RtBEF中利用勾股定理得到(2-x2+(2=x2,解得x,然后在RtAOF中利用勾股定理计算出OF,再利用余弦的定义求解即可.【详解】解:连接BE,连接AEFGO,如图,
    ∵四边形ABCD为菱形,∠A=60°,
    ∴△BDC为等边三角形,∠ADC=120°,
    E点为CD的中点,
    CE=DE=1,BECD
    RtBCE中,BE=CE=
    ABCD
    BEAB


    AF=x
    ∵菱形纸片翻折,使点A落在CD的中点E处,
    FE=FA=x
    BF=2-x
    RtBEF中,(2-x2+(2=x2解得:
    RtAOF中,

    故答案为: 【点睛】本题考查了折叠的性质以及菱形的性质,注意掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.5、4【分析】两个点关于原点对称时,它们的坐标符号相反,即点Pxy)关于原点O的对称点是P1(-x,-y).【详解】解:因为点Pm,﹣2)与Q(﹣4,2)关于原点对称,所以m-4=0,m=4,故答案为:4.【点睛】本题考查平面内两点关于原点对称的点,属于基础题,掌握相关知识是解题关键.三、解答题1、(1)证明见解析;(2)【分析】(1)先证明再证明从而可得结论;(2)证明是等边三角形,再分别求解 从而可得答案.【详解】证明(1) 平行四边形ABCD中,, EF分别是BCAD的中点, (2) 是等边三角形, 四边形是平行四边形, 所以等于的2倍的角有:【点睛】本题考查的是全等三角形的判定与性质,等边三角形的判定与性质,平行四边形的性质,证明“是等边三角形”是解(2)的关键.2、(1)证明见解析;(2)证明见解析;【分析】(1)根据平行四边形的性质得到AB=CD,然后根据CE=DC,得到AB=EC,利用“一组对边平行且相等的四边形是平行四边形”判断即可; (2)由(1)得的结论得四边形ABEC是平行四边形,再通过角的关系得出FA=FE=FB=FCAE=BC,可得结论.【详解】证明:(1)∵四边形ABCD是平行四边形, AB=CDCE=DCAB=EC∴四边形ABEC是平行四边形; (2)∵由(1)知,四边形ABEC是平行四边形, FA=FEFB=FC∵四边形ABCD是平行四边形, ∴∠ABC=∠D又∵∠AFC=2∠ADC∴∠AFC=2∠ABC∵∠AFC=∠ABC+∠BAF∴∠ABC=∠BAFFA=FBFA=FE=FB=FCAE=BC∴四边形ABEC是矩形.【点睛】本题考查的是平行四边形的判定与性质及矩形的判定,关键是先由平行四边形的性质证三角形全等,然后推出平行四边形,再通过角的关系证矩形.3、(1)矩形,见解析;(2)3【分析】(1)利用AAS判定△ABE≌△FCE,从而得到ABCF;由已知可得四边形ABFC是平行四边形,BCAF,根据对角线相等的平行四边形是矩形,可得到四边形ABFC是矩形;(2)先证△ABE是等边三角形,可得ABAEEF=3.【详解】解:(1)四边形ABFC是矩形,理由如下:∵四边形ABCD是平行四边形,∴∠BAE=∠CFE,∠ABE=∠FCEEBC的中点,EBEC在△ABE和△FCE中,∴△ABE≌△FCEAAS),ABCF∴四边形ABFC是平行四边形,ADBCADAFBCAF∴四边形ABFC是矩形.(2)∵四边形ABFC是矩形,BCAFAEEFBECEAEBE∵∠ABC=60°,∴△ABE是等边三角形,ABAE=3,EF=3.【点睛】本题考查了平行四边形的性质与判定,矩形的判定,三角形全等的性质与判定,等边三角形的性质与判定,掌握以上性质定理是解题的关键.4、(1)见解析;(2)39【分析】(1)首先根据CFDEDFEF得出CFDE的中垂线,然后根据垂直平分线的性质得到CDCE,然后根据直角三角形斜边上的中线等于斜边的一半得到CDAD,即可证明ADCE(2)由(1)得CDCE=AB=5,由勾股定理求出BC,然后结合三角形的面积公式进行计算.【详解】(1)证明:∵DFEF  ∴点FDE的中点 又∵CFDE  CFDE的中垂线CDCE又∵在RtABC中,∠ACB=90°,CD是斜边AB上的中线CD=ADADCE(2)解:由(1)得CDCE==5 AB=10  ∴在RtABC中,BC==8EB=EC+BC=13【点睛】此题考查了垂直平分线的判定和性质,直角三角形性质,三角形面积公式等知识,解题的关键是熟练掌握垂直平分线的判定和性质,直角三角形性质,三角形面积公式.5、见解析【分析】利用矩形性质以及等边对等角,证明,最后利用边角边即可证明【详解】解:四边形ABCD是矩形,中, 【点睛】本题主要是考查了矩形的性质、等边对等角以及全等三角形的判定,熟练地利用矩形性质以及等边对等角,求证边和角相等,进而证明三角形全等,这是解决该题的关键. 

    相关试卷

    数学八年级下册第十五章 四边形综合与测试同步练习题:

    这是一份数学八年级下册第十五章 四边形综合与测试同步练习题,共31页。

    初中数学北京课改版八年级下册第十五章 四边形综合与测试当堂达标检测题:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试当堂达标检测题,共25页。试卷主要包含了下列图案中,是中心对称图形的是等内容,欢迎下载使用。

    2020-2021学年第十五章 四边形综合与测试练习题:

    这是一份2020-2021学年第十五章 四边形综合与测试练习题,共27页。试卷主要包含了下列说法中,不正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map