数学八年级下册第十五章 四边形综合与测试同步练习题
展开
这是一份数学八年级下册第十五章 四边形综合与测试同步练习题,共26页。试卷主要包含了以下分别是回收等内容,欢迎下载使用。
京改版八年级数学下册第十五章四边形同步训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )
A.2.5 B.2 C. D.
2、如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是( )
A.AB=BE B.DE⊥DC C.∠ADB=90° D.CE⊥DE
3、如图,在中,∠ACB=90°,AB=10,CD是AB边上的中线,则CD的长是( )
A.20 B.10 C.5 D.2
4、以下分别是回收、节水、绿色包装、低碳4个标志,其中是中心对称图形的是( ).
A. B. C. D.
5、如图,在△ABC中,∠ABC=90°,AC=18,BC=14,D,E分别是AB,AC的中点,连接DE,BE,点M在CB的延长线上,连接DM,若∠MDB=∠A,则四边形DMBE的周长为( )
A.16 B.24 C.32 D.40
6、下列图形中,可以看作是中心对称图形的是( )
A. B. C. D.
7、已知,四边形ABCD的对角线AC和BD相交于点O.设有以下条件:①AB=AD;②AC=BD;③AO=CO,BO=DO;④四边形ABCD是矩形;⑤四边形ABCD是菱形;⑥四边形ABCD是正方形.那么,下列推理不成立的是( )
A.①④⇒⑥ B.①③⇒⑤ C.①②⇒⑥ D.②③⇒④
8、下列各APP标识的图案是中心对称图形的是( )
A. B. C. D.
9、如图,在中,,点,分别是,上的点,,,点,,分别是,,的中点,则的长为( ).
A.4 B.10 C.6 D.8
10、在Rt△ABC中,∠C=90°,若D为斜边AB上的中点,AB的长为10,则DC的长为( )
A.5 B.4 C.3 D.2
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,平行四边形ABCD,AD=5,AB=8,点A的坐标为(-3,0)点C的坐标为______.
2、将△ABC纸片沿DE按如图的方式折叠.若∠C=50°,∠1=85°,则∠2等于______.
3、已知一个正多边形的内角和为1080°,那么从它的一个顶点出发可以引 _____条对角线.
4、如图,正方形ABCD的边长为做正方形,使A,B,C,D是正方形各边的中点;做正方形,使是正方形各边的中点……以此类推,则正方形的边长为__________.
5、如图,在正方形ABCD中,AB=4,E为对角线AC上与A,C不重合的一个动点,过点E作EF⊥AB于点F,EG⊥BC于点G,连接DE,FG,下列结论:①DE=FG;②DE⊥FG;③∠BFG=∠ADE;④FG的最小值为3.其中正确结论的序号为__.
三、解答题(5小题,每小题10分,共计50分)
1、如图是由3个同样的正方形所组成,请再补上一个同样的正方形,使得由4个正方形组成的图形成为一个中心对称图形.画出所有情况(给出的图形不一定全用,不够可添加).
2、如图,在平行四边形ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF,AC,且AD=AF.
(1)判断四边形ABFC的形状并证明;
(2)若AB=3,∠ABC=60°,求EF的长.
3、如图,在中,对角线AC、BD交于点O,AB=10,AD=8,AC⊥BC,求
(1)的面积;
(2)△AOD的周长.
4、如图,在▱ABCD中,对角线AC,BD交于点O,E是BD延长线上一点,且△ACE是等边三角形.
(1)求证:四边形ABCD是菱形;
(2)若∠AED=2∠EAD,AB=a,求四边形ABCD的面积.
5、如图,在△ABC中,,,延长CB,并将射线CB绕点C逆时针旋转90°得到射线l,D为射线l上一动点,点E在线段CB的延长线上,且,连接DE,过点A作于M.
(1)依题意补全图1,并用等式表示线段DM与ME之间的数量关系,并证明;
(2)取BE的中点N,连接AN,添加一个条件:CD的长为_______,使得成立,并证明.
-参考答案-
一、单选题
1、D
【分析】
利用矩形的性质,求证明,进而在中利用勾股定理求出的长度,弧长就是的长度,利用数轴上的点表示,求出弧与数轴交点表示的实数即可.
【详解】
解:四边形OABC是矩形,
,
在中,由勾股定理可知:,
,
弧长为,故在数轴上表示的数为,
故选:.
【点睛】
本题主要是考查了矩形的性质、勾股定理解三角形以及数轴上的点的表示,熟练利用矩形性质,得到直角三角形,然后通过勾股定理求边长,是解决该类问题的关键.
2、B
【分析】
先证明四边形BCED为平行四边形,再根据矩形的判定进行解答.
【详解】
解:∵四边形ABCD为平行四边形,
∴AD∥BC,且AD=BC,
又∵AD=DE,
∴DE∥BC,且DE=BC,
∴四边形BCED为平行四边形,
A、∵AB=BE,DE=AD,
∴BD⊥AE,
∴□DBCE为矩形,故本选项不符合题意;
B、∵DE⊥DC,
∴∠EDB=90°+∠CDB>90°,
∴四边形DBCE不能为矩形,故本选项符合题意;
C、∵∠ADB=90°,
∴∠EDB=90°,
∴□DBCE为矩形,故本选项不符合题意;
D、∵CE⊥DE,
∴∠CED=90°,
∴□DBCE为矩形,故本选项不符合题意.
故选:B.
【点睛】
本题考查了平行四边形的判定和性质、矩形的判定等知识,判定四边形BCED为平行四边形是解题的关键.
3、C
【分析】
由直角三角形的性质知:斜边上的中线等于斜边的一半,即可求出CD的长.
【详解】
解:∵在中,,AB=10,CD是AB边上的中线
故选:C.
【点睛】
本题考查了直角三角形斜边上的中线的性质,在直角三角形中,斜边上的中线等于斜边的一半.
4、C
【分析】
根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,即可判断出答案.
【详解】
解:A、此图形不是中心对称图形,故本选项不符合题意;
B、此图形不是中心对称图形,故此选项不符合题意;
C、此图形是中心对称图形,故此选项符合题意;
D、此图形不是中心对称图形,故此选项不符合题意.
故选:C.
【点睛】
此题主要考查了中心对称图形的定义,关键是找出图形的对称中心.
5、C
【分析】
由中点的定义可得AE=CE,AD=BD,根据三角形中位线的性质可得DE//BC,DE=BC,根据平行线的性质可得∠ADE=∠ABC=90°,利用ASA可证明△MBD≌△EDA,可得MD=AE,DE=MB,即可证明四边形DMBE是平行四边形,可得MD=BE,进而可得四边形DMBE的周长为2DE+2MD=BC+AC,即可得答案.
【详解】
∵D,E分别是AB,AC的中点,
∴AE=CE,AD=BD,DE为△ABC的中位线,
∴DE//BC,DE=BC,
∵∠ABC=90°,
∴∠ADE=∠ABC=90°,
在△MBD和△EDA中,,
∴△MBD≌△EDA,
∴MD=AE,DE=MB,
∵DE//MB,
∴四边形DMBE是平行四边形,
∴MD=BE,
∵AC=18,BC=14,
∴四边形DMBE的周长=2DE+2MD=BC+AC=18+14=32.
故选:C.
【点睛】
本题考查全等三角形的判定与性质、三角形中位线的性质及平行四边形的判定与性质,三角形中位线平行于第三边且等于第三边的一半;有一组对边平行且相等的四边形是平行四边形;熟练掌握相关性质及判定定理是解题关键.
6、A
【分析】
根据中心对称图形的概念(在平面内,把一个图形绕着某个点旋转,如果旋转后的图形能与原来的图形重合,则为中心对称图形)求解即可.
【详解】
解:B、C、D三个选项的图形旋转后,均不能与原来的图形重合,不符合题意,
A选项是中心对称图形.故本选项正确.
故选:A.
【点睛】
本题考查了中心对称图形的概念,深刻理解中心对称图形的概念是解题关键.
7、C
【分析】
根据已知条件以及正方形、菱形、矩形、平行四边形的判定条件,对选项进行分析判断即可.
【详解】
解:A、①④可以说明,一组邻边相等的矩形是正方形,故A正确.
B、③可以说明四边形是平行四边形,再由①,一组临边相等的平行四边形是菱形,故B正确.
C、①②,只能说明两组邻边分别相等,可能是菱形,但菱形不一定是正方形,故C错误.
D、③可以说明四边形是平行四边形,再由②可得:对角线相等的平行四边形为矩形,故D正确.
故选:C.
【点睛】
本题主要是考查了特殊四边形的判定,熟练掌握各类四边形的判定条件,是解决本题的关键.
8、C
【分析】
根据中心对称图形的概念对各选项分析判断即可得解.
【详解】
A、图形关于中心旋转180°不能完全重合,所以不是中心对称图形,故本选项不符合题意;
B、图形关于中心旋转180°不能完全重合,所以不是中心对称图形,故本选项不符合题意;
C、图形关于中心旋转180°能完全重合,所以是中心对称图形,故本选项符合题意;
D、图形关于中心旋转180°不能完全重合,所以不是中心对称图形,故本选项不符合题意.
故选:C.
【点睛】
本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
9、B
【分析】
根据三角形中位线定理得到PD=BF=6,PD∥BC,根据平行线的性质得到∠PDA=∠CBA,同理得到∠PDQ=90°,根据勾股定理计算,得到答案.
【详解】
解:∵∠C=90°,
∴∠CAB+∠CBA=90°,
∵点P,D分别是AF,AB的中点,
∴PD=BF=6,PD//BC,
∴∠PDA=∠CBA,
同理,QD=AE=8,∠QDB=∠CAB,
∴∠PDA+∠QDB=90°,即∠PDQ=90°,
∴PQ==10,
故选:B.
【点睛】
本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.
10、A
【分析】
利用直角三角形斜边的中线的性质可得答案.
【详解】
解:∵∠C=90°,若D为斜边AB上的中点,
∴CD=AB,
∵AB的长为10,
∴DC=5,
故选:A.
【点睛】
此题主要考查了直角三角形斜边的中线,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.
二、填空题
1、(8,4)
【分析】
先根据勾股定理得到OD的长,即可得到点D的坐标,再根据平行四边形的性质和平行x轴两点坐标特征即可得到点C的坐标.
【详解】
解:∵点A的坐标为(-3,0),
在Rt△ADO中,AD=5, AO=3,,
∴OD==,
∴D(0,4),
∵平行四边形ABCD,
∴AB=CD=8,AB∥CD,
∵AB在x轴上,
∴CD∥x轴,
∴C、D两点的纵坐标相同,
∴C(8,4) .
故答案为(8,4).
【点睛】
本题考查平行四边形性质,勾股定理,平行x轴两点坐标特征,解答本题的关键是熟练掌握平行于x轴的直线上的点的纵坐标相同,平行于y轴的直线上的点的横坐标相同.
2、
【分析】
利用三角形的内角和定理以及折叠的性质,求出,,利用四边形内角和为,即可求出∠2.
【详解】
解:在中,,
在中,,
由折叠性质可知: ,
四边形的内角和为,
,
,,
,
,,且∠1=85°,
,
故答案为:.
【点睛】
本题主要是考查了三角形和四边形的内角和定理,熟练利用三角形内角和定理,求出两角之和,最后利用四边形的内角和求得某角的度数,这是解决该题的关键.
3、
【分析】
设这个正多边形有条边,再建立方程 解方程求解结合从边形的一个顶点出发可以引条对角线,从而可得答案.
【详解】
解:设这个正多边形有条边,则
解得:
所以从一个正八边形的一个顶点出发可以引条对角线,
故答案为:
【点睛】
本题考查的是正多边形的内角和定理的应用,正多边形的对角线问题,掌握“多边形的内角和公式为 从边形的一个顶点出发可以引条对角线”是解本题的关键.
4、
【分析】
利用正方形ABCD的及勾股定理,求出的长,再根据勾股定理求出和的长,找出规律,即可得出正方形的边长.
【详解】
解:∵A,B,C,D是正方形各边的中点
∴,
∵正方形ABCD的边长为,即AB=,
∴,解得:,
∴==2,
同理==2,
==4 …,
∴,
∴=,
∴的边长为
故答案为:.
【点睛】
本题考查了正方形性质、勾股定理的应用,解此题的关键是能根据计算结果得出规律,本题具有一定的代表性,是一道比较好的题目.
5、①②③
【分析】
①连接BE,可得四边形EFBG为矩形,可得BE=FG;由△AEB≌△AED可得DE=BE,所以DE=FG;②由矩形EFBG可得OF=OB,则∠OBF=∠OFB;由∠OBF=∠ADE,则∠OFB=∠ADE;由四边形ABCD为正方形可得∠BAD=90°,即∠AHD+∠ADH=90°,所以∠AHD+∠OFH=90°,即∠FMH=90°,可得DE⊥FG;③由②中的结论可得∠BFG=∠ADE;④由于点E为AC上一动点,当DE⊥AC时,根据垂线段最短可得此时DE最小,最小值为2,由①知FG=DE,所以FG的最小值为2.
【详解】
解:①连接BE,交FG于点O,如图,
∵EF⊥AB,EG⊥BC,
∴∠EFB=∠EGB=90°.
∵∠ABC=90°,
∴四边形EFBG为矩形.
∴FG=BE,OB=OF=OE=OG.
∵四边形ABCD为正方形,
∴AB=AD,∠BAC=∠DAC=45°.
在△ABE和△ADE中,
,
∴△ABE≌△ADE(SAS).
∴BE=DE.
∴DE=FG.
∴①正确;
②延长DE,交FG于M,交FB于点H,
∵△ABE≌△ADE,
∴∠ABE=∠ADE.
由①知:OB=OF,
∴∠OFB=∠ABE.
∴∠OFB=∠ADE.
∵∠BAD=90°,
∴∠ADE+∠AHD=90°.
∴∠OFB+∠AHD=90°.
即:∠FMH=90°,
∴DE⊥FG.
∴②正确;
③由②知:∠OFB=∠ADE.
即:∠BFG=∠ADE.
∴③正确;
④∵点E为AC上一动点,
∴根据垂线段最短,当DE⊥AC时,DE最小.
∵AD=CD=4,∠ADC=90°,
∴AC==4.
∴DE=AC=2.
由①知:FG=DE,
∴FG的最小值为2,
∴④错误.
综上,正确的结论为:①②③.
故答案为:①②③.
【点睛】
本题考查了全等三角形的性质与判定,正方形的性质,勾股定理,垂线段最短,掌握正方形的性质是解题的关键.
三、解答题
1、见解析
【分析】
根据中心对称图形的概念求解即可.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.
【详解】
解:如图所示,一共有三种情况:
【点睛】
此题考查了画中心对称图形,解题的关键是熟练掌握中心对称图形的概念.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.
2、(1)矩形,见解析;(2)3
【分析】
(1)利用AAS判定△ABE≌△FCE,从而得到AB=CF;由已知可得四边形ABFC是平行四边形,BC=AF,根据对角线相等的平行四边形是矩形,可得到四边形ABFC是矩形;
(2)先证△ABE是等边三角形,可得AB=AE=EF=3.
【详解】
解:(1)四边形ABFC是矩形,理由如下:
∵四边形ABCD是平行四边形,
∴,
∴∠BAE=∠CFE,∠ABE=∠FCE,
∵E为BC的中点,
∴EB=EC,
在△ABE和△FCE中,
,
∴△ABE≌△FCE(AAS),
∴AB=CF.
∵,
∴四边形ABFC是平行四边形,
∵AD=BC,AD=AF,
∴BC=AF,
∴四边形ABFC是矩形.
(2)∵四边形ABFC是矩形,
∴BC=AF,AE=EF,BE=CE,
∴AE=BE,
∵∠ABC=60°,
∴△ABE是等边三角形,
∴AB=AE=3,
∴EF=3.
【点睛】
本题考查了平行四边形的性质与判定,矩形的判定,三角形全等的性质与判定,等边三角形的性质与判定,掌握以上性质定理是解题的关键.
3、(1)48(2)
【分析】
(1)利用勾股定理先求出高AC,故可求解面积;
(2)根据平行四边形的性质求出AO,再利用勾股定理求出OB的长,故可求解.
【详解】
解:(1)∵四边形ABCD是平行四边形,且AD=8
∴BC=AD=8
∵AC⊥BC
∴∠ACB=90°
在Rt△ABC中,由勾股定理得AC2=AB2-BC2
∴
∴
(2)∵四边形ABCD是平行四边形,且AC=6
∴
∵∠ACB=90°,BC=8
∴,
∴
∴.
【点睛】
此题主要考查平行四边形的性质,解题的关键是熟知平行四边形的性质及勾股定理的应用.
4、(1)见解析;(2)正方形ABCD的面积为
【分析】
(1)由等边三角形的性质得EO⊥AC,即BD⊥AC,再根据对角线互相垂直的平行四边形是菱形,即可得出结论;
(2)证明菱形ABCD是正方形,即可得出答案.
【详解】
(1)证明:∵四边形ABCD是平行四边形,
∴AO=OC,
∵△ACE是等边三角形,
∴EO⊥AC (三线合一),
即BD⊥AC,
∴▱ABCD是菱形;
(2)解:∵△ACE是等边三角形,
∴∠EAC=60°
由(1)知,EO⊥AC,AO=OC
∴∠AEO=∠OEC=30°,△AOE是直角三角形,
∵∠AED=2∠EAD,
∴∠EAD=15°,
∴∠DAO=∠EAO﹣∠EAD=45°,
∵▱ABCD是菱形,
∴∠BAD=2∠DAO=90°,
∴菱形ABCD是正方形,
∴正方形ABCD的面积=AB2=a2.
【点睛】
本题考查了菱形的判定与性质、正方形的判定与性质、平行四边形的性质、等边三角形的性质等知识,证明四边形ABCD为菱形是解题的关键.
5、(1)DM=ME,见解析;(2),见解析
【分析】
(1)补全图形,连接AE、AD,通过∠ABE=∠ACD,AB=AC,BE=CD,证明 △ABE ≌ △ACD,得AE=AD,再利用AM⊥DE于M,即可得到DM=EM.
(2)连接AD,AE,BM ,可求出,当时,可得,由(1)得DM=EM,可知BM是△CDE的中位线从而得到,BM∥CD,得到∠ABM=135°=∠ABE.因为N为BE中点,可知从而证明△ABN ≌ △ABM得到AN=AM,由(1),△ABE ≌ △ACD,可证明∠EAB=∠DAC,AD=AE进而得到∠EAD=90°,又因为DM=EM,即可得到.
【详解】
(1)补全图形如下图,
DM与ME之间的数量关系为DM=ME.
证明:连接AE,AD,
∵ ∠BAC=90°,AB=AC,
∴ ∠ABC=∠ACB=45°.
∴ ∠ABE=180°-∠ABC=135°.
∵ 由旋转,∠BCD=90°,
∴ ∠ACD=∠ACB+∠BCD=135°.
∴ ∠ABE=∠ACD.
∵ AB=AC,BE=CD,
∴ △ABE ≌ △ACD.
∴ AE=AD.
∵ AM⊥DE于M,
∴ DM=EM.
(2)
证明:连接AD,AE,BM.
∵ AB=AC=1,∠BAC=90°,
∴ .
∵ ,
∴ .
∵ 由(1)得DM=EM,
∴ BM是△CDE的中位线.
∴ ,BM∥CD.
∴ ∠EBM=∠ECD=90°.
∵ ∠ABE=135°,
∴ ∠ABM=135°=∠ABE.
∵ N为BE中点,
∴ .
∴ BM=BN.
∵ AB=AB,
∴ △ABN ≌ △ABM.
∴ AN=AM.
∵ 由(1),△ABE ≌ △ACD,
∴ ∠EAB=∠DAC,AD=AE.
∵ ∠BAC=∠DAC+∠DAB=90°,
∴ ∠EAD=90°.
∵ DM=EM,
∴ .
∴ .
【点睛】
本题考查了旋转的性质和三角形全等的判定及性质,熟练掌握三角形全等的判定及性质是解题的关键.
相关试卷
这是一份北京课改版八年级下册第十五章 四边形综合与测试达标测试,共28页。试卷主要包含了如图,在六边形中,若,则等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十五章 四边形综合与测试当堂达标检测题,共24页。
这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试当堂达标检测题,共22页。试卷主要包含了下列∠A等内容,欢迎下载使用。