搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年度京改版八年级数学下册第十五章四边形专项测试练习题(精选)

    2021-2022学年度京改版八年级数学下册第十五章四边形专项测试练习题(精选)第1页
    2021-2022学年度京改版八年级数学下册第十五章四边形专项测试练习题(精选)第2页
    2021-2022学年度京改版八年级数学下册第十五章四边形专项测试练习题(精选)第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北京课改版八年级下册第十五章 四边形综合与测试综合训练题

    展开

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试综合训练题,共24页。
    京改版八年级数学下册第十五章四边形专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、一个多边形每个外角都等于36°,则这个多边形是几边形(     A.7 B.8 C.9 D.102、如图,已知在正方形ABCD中,厘米,,点E在边AB上,且厘米,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上以a厘米/秒的速度由C点向D点运动,设运动时间为t秒.若存在at的值,使全等时,则t的值为(   
    A.2 B.2或1.5 C.2.5 D.2.5或23、下列命题是真命题的是(    A.五边形的内角和是720° B.三角形的任意两边之和大于第三边C.内错角相等 D.对角线互相垂直的四边形是菱形4、如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为(  )A.180° B.360°C.540° D.不能确定5、下列长度的三条线段与长度为4的线段首尾依次相连能组成四边形的是(    ).A.1,1,2, B.1,1,1 C.1,2,2 D.1,1,66、下面图案中既是轴对称图形又是中心对称图形的是(  )A. B. C. D.7、如图,把一张长方形纸片ABCD沿对角线AC折叠,点B的对应点为点B′,AB′与DC相交于点E,则下列结论正确的是 (   A.∠DAB′=∠CAB B.∠ACD=∠BCD C.ADAE D.AECE8、菱形ABCD的周长是8cm,∠ABC=60°,那么这个菱形的对角线BD的长是(  )A.cm B.2cm C.1cm D.2cm9、下列图形中,既是轴对称图形又是中心对称图形的是(  )A. B. C. D.10、古典园林中的窗户是中国传统建筑装饰的重要组成部分,一窗一姿容,一窗一景致.下列窗户图案中,是中心对称图形的是(    A. B.C.  D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、已知一个正多边形的内角和为1080°,那么从它的一个顶点出发可以引 _____条对角线.2、在平面直角坐标系中,点P(-3,7)关于原点对称的点的坐标是______.3、若一个n边形的每个内角都等于135°,则该n边形的边数是____________.4、如图,直线l经过正方形ABCD的顶点B,点AC到直线l的距离分别是1,3,则正方形ABCD的面积是 _____.5、如图,在矩形ABCD中,AB=3,BC=4,点P是对角线AC上一点,若点PAB组成一个等腰三角形时,△PAB的面积为___________.三、解答题(5小题,每小题10分,共计50分)1、(1)如图1中,∠A=90°,请用直尺和圆规作一条直线,把ABC分割成两个等腰三角形(不写作法,但须保留作图痕迹).(2)已知内角度数的两个三角形如图2、图3所示.请你判断,能否分别画一条直线把它们分割成两个等腰三角形?若能,请画出直线,并标注底角的度数.(3)一个三角形有一内角为48°,如果经过其一个顶点作直线能把其分成两个等腰三角形,那么它的最大的内角可能值为            2、如图,在正方形ABCD中,DFAEAEDF相交于点O(1)求证:△DAF≌△ABE(2)求∠AOD的度数.3、如图,四边形ABCD为平行四边形,∠BAD的平分线AFCD于点E,交BC的延长线于点F.点E恰是CD的中点.求证:(1)△ADE≌△FCE(2)BEAF4、已知:在中,点、点、点分别是的中点,连接(1)如图1,若,求证:四边形为菱形;(2)如图2,过延长线于点,连接,在不添加任何辅助线的情况下,请直接写出图中所有与面积相等的平行四边形.
     5、如图,在长方形ABCD中,AB=3,BC=4,点EBC边上一点,连接AE,将∠B沿直线AE折叠,使点B落在点处.(1)如图1,当点E与点C重合时,AD交于点F,求证:FAFC(2)如图2,当点E不与点C重合,且点在对角线AC上时,求CE的长. -参考答案-一、单选题1、D【分析】根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【详解】解:∵360°÷36°=10,∴这个多边形的边数是10.故选D.【点睛】本题考查了多边形内角与外角,外角和的大小与多边形的边数无关,熟练掌握多边形内角与外角是解题关键.2、D【分析】根据题意分两种情况讨论若△BPE≌△CQP,则BP=CQBE=CP;若△BPE≌△CPQ,则BP=CP=5厘米,BE=CQ=6厘米进行求解即可.【详解】解:当,即点Q的运动速度与点P的运动速度都是2厘米/秒,若△BPE≌△CQP,则BP=CQBE=CP
    AB=BC=10厘米,AE=4厘米,
    BE=CP=6厘米,
    BP=10-6=4厘米,
    ∴运动时间t=4÷2=2(秒);
    ,即点Q的运动速度与点P的运动速度不相等,
    BPCQ
    ∵∠B=∠C=90°,
    ∴要使△BPE与△OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可.
    ∴点PQ运动的时间t=(秒).综上t的值为2.5或2.
    故选:D.【点睛】本题主要考查正方形的性质以及全等三角形的判定,解决问题的关键是掌握正方形的四条边都相等,四个角都是直角;两边及其夹角分别对应相等的两个三角形全等.同时要注意分类思想的运用.3、B【分析】利用多边形的内角和公式、三角形的三边关系、平行线的性质及菱形的判定分别判断后即可确定正确的选项.【详解】解:A、五边形的内角和为540°,故原命题错误,是假命题,不符合题意;B、三角形的任意两边之和大于第三边,正确,是真命题,符合题意;C、两直线平行,内错角相等,故原命题错误,是假命题,不符合题意;D、对角线互相垂直的平行四边形是菱形,故原命题错误,是假命题,不符合题意,故选:B.【点睛】本题考查了命题与定理的知识,解题的关键是了解多边形的内角和公式、三角形的三边关系、平行线的性质及菱形的判定等知识,难度不大.4、B【分析】BEDF交于点MBEAC交于点N,根据三角形的外角性质,可得 ,再根据四边形的内角和等于360°,即可求解.【详解】解:设BEDF交于点MBEAC交于点N故选:B【点睛】本题主要考查了三角形的外角性质,多边形的内角和,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和;四边形的内角和等于360°是解题的关键.5、C【分析】将每个选项中的四条线段进行比较,任意三条线段的和都需大于另一条线段的长度,由此可组成四边形,据此解答.【详解】解:A、因为1+1+2=4,所以不能构成四边形,故该项不符合题意;B、因为1+1+1<4,所以不能构成四边形,故该项不符合题意;C、因为1+2+2>4,所以能构成四边形,故该项符合题意;D、因为1+1+4=6,所以不能构成四边形,故该项不符合题意;故选:C.【点睛】此题考查了多边形的构成特点:任意几条边的和大于另一条边长,正确理解多边形的构成特点是解题的关键.6、D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A.不是轴对称图形,也不是中心对称图形,故此选项不合题意;B.是轴对称图形,不是中心对称图形,故此选项不合题意;C.不是轴对称图形,是中心对称图形,故此选项不合题意;D.既是轴对称图形又是中心对称图形,故此选项符合题意.故选:D.【点睛】本题考查了轴对称图形和中心对称图形;如果一个图形沿着某条直线对折后,直线两旁的部分能够重合,则此图形是轴对称图形,这条直线叫做对称轴;如果一个图形绕某一固定点旋转180度后能够与原来的图形重合,则称这个图形是中心对称图形,固定的点叫对称中心;理解两个概念是解答本题的关键.7、D【分析】根据翻折变换的性质可得∠BAC=∠CAB′,根据两直线平行,内错角相等可得∠BAC=∠ACD,从而得到∠ACD=∠CAB′,然后根据等角对等边可得AE=CE,从而得解.【详解】解:∵矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,
    ∴∠BAC=∠CAB′,
    ABCD
    ∴∠BAC=∠ACD
    ∴∠ACD=∠CAB′,
    AE=CE
    ∴结论正确的是D选项.
    故选D.【点睛】本题考查了翻折变换的性质,平行线的性质,矩形的对边互相平行,等角对等边的性质,熟记各性质并准确识图是解题的关键.8、B【分析】由菱形的性质得ABBC=2(cm),OAOCOBODACBD,再证△ABC是等边三角形,得ACAB=2(cm),则OA=1(cm),然后由勾股定理求出OB(cm),即可求解.【详解】解:∵菱形ABCD的周长为8cmABBC=2(cm),OAOCOBODACBD∵∠ABC=60°,∴△ABC是等边三角形,ACAB=2cm,OA=1(cm),RtAOB中,由勾股定理得:OB(cm),BD=2OB=2(cm),故选:B.【点睛】此题考查了菱形的性质,勾股定理,等边三角形的性质和判定,解题的关键是熟练掌握菱形的性质,勾股定理,等边三角形的性质和判定方法.9、D【分析】根据轴对称图形与中心对称图形的概念求解即可.【详解】解:A.是轴对称图形,不是中心对称图形,故此选项不合题意;B.是轴对称图形,不是中心对称图形,故此选项不合题意;C.是轴对称图形,不是中心对称图形,故此选项符合题意;D.是轴对称图形,也是中心对称图形,故此选项不合题意.故选D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.10、C【分析】根据中心对称图形的定义进行逐一判断即可.【详解】解:A、不是中心对称图形,故此选项不符合题意;B、不是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项符合题意;D、不是中心对称图形,故此选项不符合题意;故选C.【点睛】本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.二、填空题1、【分析】设这个正多边形有条边,再建立方程 解方程求解结合从边形的一个顶点出发可以引条对角线,从而可得答案.【详解】解:设这个正多边形有条边,则 解得: 所以从一个正八边形的一个顶点出发可以引条对角线,故答案为:【点睛】本题考查的是正多边形的内角和定理的应用,正多边形的对角线问题,掌握“多边形的内角和公式为边形的一个顶点出发可以引条对角线”是解本题的关键.2、 (3,-7)【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:在平面直角坐标系中,点P(-3,7)关于原点对称的点的坐标是(3,-7),故答案为:(3,-7).【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.3、8【分析】根据题意求得多边形的外角,根据360度除以多边形的外角即可求得n边形的边数【详解】解:∵一个n边形的每个内角都等于135°,∴则这个n边形的每个外角等于n边形的边数是故答案为:【点睛】本题考查了多边形的内角与外角的关系,求得多边形的外角是解题的关键.4、10【分析】根据正方形的性质,结合题意易求证,即可利用“ASA”证明,得出.最后根据勾股定理可求出,即正方形的面积为10.【详解】∵四边形ABCD是正方形,根据题意可知:∴在中,∵在中,∴正方形ABCD的面积是10.故答案为:10.【点睛】本题考查正方形的性质,全等三角形的判定和性质以及勾股定理.利用数形结合的思想是解答本题的关键.5、或3【分析】BBMACM,根据矩形的性质得出∠ABC=90°,根据勾股定理求出AC,根据三角形的面积公式求出高BM,分为三种情况:①ABBP=3,②ABAP=3,③APBP,分别画出图形,再求出面积即可.【详解】解:∵四边形ABCD是矩形,∴∠ABC=90°,由勾股定理得:有三种情况:①当ABBP=3时,如图1,过BBMACMSABC解得:ABBP=3,BMACAPAM+PM∴△PAB的面积=②当ABAP=3时,如图2,BM∴△PAB的面积S③作AB的垂直平分线NQ,交ABN,交ACP,如图3,则APBPBNAN∵四边形ABCD是矩形,NQACPNBCANBNAPCP∴△PAB的面积;即△PAB的面积为或3.故答案为:或3.【点睛】本题主要是考查了矩形的性质、等腰三角形的判定以及勾股定理求边长,熟练掌握矩形的性质,利用等腰三角形的判定,分成三种情况讨论,是解决本题的关键.三、解答题1、(1)见解析;(2)见解析;(3)108°【分析】(1)利用直角三角形斜边上的中线等于斜边的一半,作BC的垂直平分线即可确定点E,连接AE即可;(2)分别以24°为底角,可分割出两个等腰三角形;(3)利用图1、2、3中三角形内角之间的关系进行判断.【详解】解:(1)如图,作BC的垂直平分线交BCE,连接AE则直线AE即为所求;(2)如图:(3)根据(1)(2)中三个角之间的关系可知:当三角形是直角三角形时,肯定可以分割成两个等腰三角形,此时最大角为90°;当一个角是另一个三倍时,也肯定可以分割成两个等腰三角形,此时最大角为99°;如图3,此时最大角为108°.综上所述:最大角为108°,故答案为:108°.【点睛】本题主要考查垂直平分线的尺规作图、直角三角形斜边中线定理及等腰三角形的性质,熟练掌握垂直平分线的尺规作图、直角三角形斜边中线定理及等腰三角形的性质是解题的关键.2、(1)见解析;(2)90°【分析】(1)利用正方形的性质得出AD=AB,∠DAB=∠ABC=90°,再证明RtDAFRtABE即可得出结论;
    (2)利用(1)的结论得出∠ADF=∠BAE,进而求出∠BAE+∠DFA=90°,最后用三角形的内角和定理即可得出结论.【详解】(1)证明:∵四边形ABCD是正方形,∴∠DAB=∠ABC=90°,ADABRtDAFRtABE中,RtDAFRtABE(HL),即△DAF≌△ABE(2)解:由(1)知,△DAF≌△ABE∴∠ADF=∠BAE∵∠ADF+∠DFA=∠BAE+∠DFA=∠DAB=90°,∴∠AOD=180°﹣(∠BAE+∠DFA)=90°.【点睛】本题主要考查了正方形的性质,全等三角形的判定和性质,三角形的内角和定理,判断出RtDAFRtABE是解本题的关键.3、(1)见解析;(2)见解析.【分析】(1)由平行四边形的性质得出ADBC,得出∠D=∠ECF,则可证明△ADE≌△FCEASA);(2)由平行四边形的性质证出ABBF,由全等三角形的性质得出AEFE,由等腰三角形的性质可得出结论.【详解】证明:(1)∵四边形ABCD为平行四边形,ADBC∴∠D=∠ECFECD的中点,EDEC在△ADE和△FCE中,∴△ADE≌△FCEASA);(2)∵四边形ABCD为平行四边形,ABCDADBC∴∠FAD=∠AFB又∵AF平分∠BAD∴∠FAD=∠FAB∴∠AFB=∠FABABBF∵△ADE≌△FCEAEFEBEAF【点睛】本题主要考查了平行四边形的性质,全等三角形的性质与判定,角平分线的定义,等腰三角形的性质与判定,熟知相关知识是解题的关键.4、(1)证明见详解;(2)与面积相等的平行四边形有【分析】(1)根据三角形中位线定理可得:,依据平行四边形的判定定理可得四边形DECF为平行四边形,再由,可得,依据菱形的判定定理即可证明;(2)根据三角形中位线定理及平行四边形的判定定理可得四边形DEFBDECFADFE是平行四边形,根据平行四边形的性质得出与各平行四边形面积之间的关系,再根据平行四边形的判定得出四边形EGCF是平行四边形,根据其性质得到,根据等底同高可得,据此即可得出与面积相等的平行四边形.【详解】解:(1)∵DEF分别是ABACBC的中点,∴四边形DECF为平行四边形,∴四边形DECF为菱形;(2)∵DEF分别是ABACBC的中点,∴四边形DEFBDECFADFE是平行四边形,∴四边形EGCF是平行四边形,∴与面积相等的平行四边形有【点睛】题目主要考查菱形及平行四边形的判定定理和性质,中位线的性质等,熟练掌握平行四边形及菱形的判定定理及性质是解题关键.5、(1)见解析;(2)CE=【分析】(1)根据平行线的性质及折叠性质证明∠FAC=∠FCA即可.(2)由题意可得,根据勾股定理求出AC=5,进而求出B'C=2,设CE= x.然后在Rt中,根据勾股定理EC2=2+2列方程求解即可;【详解】解:(1)如图1,
     ∵四边形ABCD是矩形,ADBC∴∠FAC=∠ACB∵∠ACB=∠ACF∴∠FAC=∠FCAFA=FC (2)∵,如图2, 设CE= x
     ∵四边形ABCD是矩形,∴∠B=90°,AC2=AB2+BC2= 32+42=25,AC=5,由折叠可知:=5-3=2,Rt中,EC2=2+2x2=(4-x2+22x=CE=【点睛】本题属于矩形折叠问题,考查了矩形的性质,勾股定理,直角三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型. 

    相关试卷

    初中数学北京课改版八年级下册第十五章 四边形综合与测试课后测评:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课后测评,共28页。试卷主要包含了下列图形中不是中心对称图形的是等内容,欢迎下载使用。

    初中数学北京课改版八年级下册第十五章 四边形综合与测试课后作业题:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试课后作业题,共23页。试卷主要包含了以下分别是回收,如图,M,下列命题是真命题的是等内容,欢迎下载使用。

    初中数学北京课改版八年级下册第十五章 四边形综合与测试一课一练:

    这是一份初中数学北京课改版八年级下册第十五章 四边形综合与测试一课一练,共24页。试卷主要包含了下列说法中,正确的是,下列图形中,是中心对称图形的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map