初中数学北京课改版八年级下册第十四章 一次函数综合与测试课后测评
展开京改版八年级数学下册第十四章一次函数重点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、一个一次函数图象与直线y=x+平行,且过点(﹣1,﹣25),与x轴、y轴的交点分别为A、B,则在线段AB上(包括端点A、B),横、纵坐标都是整数的点有( )
A.4个 B.5个 C.6个 D.7个
2、一次函数的自变量的取值增加2,函数值就相应减少4,则k的值为( )
A.2 B.-1 C.-2 D.4
3、在平面直角坐标系中,任意两点,,,.规定运算:①,;②;③当,且时,.
有下列三个命题:
(1)若,,则,;
(2)若,则;
(3)对任意点,,,均有成立.
其中正确命题的个数为( )
A.0个 B.1个 C.2个 D.3个
4、某油箱容量为60升的汽车,加满汽油后行驶了100千米时,邮箱中的汽油大约消耗了,如果加满后汽车的行驶路程为x千米,邮箱中剩余油量为y升,则y与x之间的函数关系式是( )
A.y=0.12x B.y=60+0.12x C.y=-60+0.12x D.y=60-0.12x
5、如图,在平面直角坐标系中,线段AB的端点为A(﹣2,1),B(1,2),若直线y=kx﹣1与线段AB有交点,则k的值不能是( ).
A.-2 B.2
C.4 D.﹣4
6、如图,一次函数的图象经过点,则下列结论正确的是( )
A.图像经过一、二、三象限 B.关于方程的解是
C. D.随的增大而减小
7、若点A(x1,y1)和B(x2,y2) 都在一次函数y=(k)x+2(k为常数)的图像上,且当x1<x2时,y1>y2,则k的值可能是( )
A.k=0 B.k=1 C.k=2 D.k=3
8、,两地相距80km,甲、乙两人沿同一条路从地到地.甲、乙两人离开地的距离(单位:km)与时间(单位:h)之间的关系如图所示.下列说法错误的是( )
A.乙比甲提前出发1h B.甲行驶的速度为40km/h
C.3h时,甲、乙两人相距80km D.0.75h或1.125h时,乙比甲多行驶10km
9、正比例函数y=mx的图象经过点(-1,2),那么这个函数的解析式为( )
A.y=x B.y=x C.y=2x D.y=-2x
10、如图,直线与分别交轴于点,,则不等式的解集为( ).
A. B. C. D.或
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在平面直角坐标系中,点P(2,﹣3)到x轴的距离为 ___.
2、若点在y轴上,则m=_____.
3、一个长方体的底面是一个边长为10cm的正方形,如果高为h(cm)时,体积为V(cm3),则V与h的关系为_______;
4、如图,函数y=mx+3与y=的图象交于点A(a,2),则方程组的解为______.
5、如图所示,在平面直角坐标系中,射线OA将由边长为1的7个小正方形组成的图案的面积分成相等的两部分,则点A的坐标为________.
三、解答题(5小题,每小题10分,共计50分)
1、一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动.快车离乙地的路程y1(km)与行驶的时间x(h)之间的函数关系,如图1中线段AB所示.慢车离甲地的路程y2(km)与行驶的时间x(h)之间的函数关系,如图1中线段AC所示.根据图象解答下列问题.
(1)甲、乙两地之间的距离为_____km,线段AB的解析式为_____.两车在慢车出发_____小时后相遇;
(2)设慢车行驶时间x(0≤x≤6,单位:h),快、慢车之间的距离为S(km).
①当两车之间距离S=300km时,求x的值;
②图2是S与x的函数图象的一部分,请补全S与x之间的函数图象(标上必要的数据).
2、已知一个正比例函数与一个一次函数的图象交于点A(3,4),且OA=OB.
(1)求两个函数的解析式;
(2)求△AOB的面积.
3、如图,在平面直角坐标系中,点B的坐标是,点C的坐标为,CB交x轴负半轴于点A,过点B作射线,作射线CD交BM于点D,且
(1)求证:点A为线段BC的中点.
(2)求点D的坐标.
4、如图,在平面直角坐标系中,直线与x轴,y轴分别交于A,B两点,直线与直线相交于点
(1)求m,n的值;
(2)直线与x轴交于点D,动点P从点D开始沿线段以每秒1个单位的速度向A点运动,设点P的运动时间为t秒.若的面积为12,求t的值.
5、甲、乙两人在某天不约而同的进行一次徒步活动,已知A、B两地相距10千米,甲先出发,从A地匀速步行到B地,乙晚出发半小时,从B地出发匀速步行到A地.两人相向而行.图中l1、l2分别表示两人离B地的距离y(千米)与时间x(小时)的关系.根据图象解答下列问题:
(1)求y甲、y乙关于x的函数表达式;
(2)在甲出发_______小时后,甲、乙相遇;相遇时离B地_______千米;
(3)甲出发_______小时后,甲、乙两人相距5千米.
-参考答案-
一、单选题
1、A
【解析】
【分析】
由题意可得:求出符合条件的直线为5x﹣4y﹣75=0,即可求出此直线与与x轴、y轴的交点分别为A(15,0)、B(0,﹣),再设出在直线AB上并且横、纵坐标都是整数的点的坐标,进而结合题意得到不等式求出N的范围,即可得到N的取值得到答案.
【详解】
解:设直线AB的解析式为y=kx+b,
∵一次函数图象与直线y=x+平行,
∴k=,
又∵所求直线过点(﹣1,﹣25),
∴﹣25=×(﹣1)+b,
解得b=﹣,
∴直线AB为y=x﹣,
∴此直线与与x轴、y轴的交点分别为A(15,0)、B(0,﹣),
设在直线AB上并且横、纵坐标都是整数的点的横坐标是x=﹣1+4N,纵坐标是y=﹣25+5N,(N是整数).
因为在线段AB上这样的点应满足0≤x=﹣1+4N≤15,且﹣<y=﹣25+5N≤0,
解得:≤N≤4,
所以N=1,2,3,4共4个,
故选:A.
【点睛】
本题考查一次函数图象上点的坐标特征,根据题意写出x和y的表示形式是解题的关键.
2、C
【解析】
【分析】
首先根据题意表示出x=1时,y=k+3,因为在x=1处,自变量增加2,函数值相应减少4,可得x=3时,函数值是k+3-4,进而得到3k+3=k+3-4,再解方程即可.
【详解】
解:由题意得:x=1时,y=k+3,
∵在x=1处,自变量增加2,函数值相应减少4,
∴x=3时,函数值是k+3-4,
∴3k+3=k+3-4,
解得:k=-2,
故选C.
【点睛】
此题主要考查了求一次函数中的k,关键是弄懂题意,表示出x=1,x=3时的y的值.
3、D
【解析】
【分析】
根据新的运算定义分别判断每个命题后即可确定正确的选项.
【详解】
解:(1)A⊕B=(1+2,2-1)=(3,1),A⊗B=1×2+2×(-1)=0,
∴①正确;
(2)设C(x3,y3),A⊕B=(x1+x2,y1+y2),B⊕C=(x2+x3,y2+y3),
∵A⊕B=B⊕C,
∴x1+x2=x2+x3,y1+y2=y2+y3,
∴x1=x3,y1=y3,
∴A=C,
∴②正确.
(3)∵(A⊕B)⊕C=(x1+x2+x3,y1+y2+y3),A⊕(B⊕C)=(x1+x2+x3,y1+y2+y3),
∴(A⊕B)⊕C=A⊕(B⊕C),
∴③正确.
正确的有3个,
故选:D.
【点睛】
本题考查了命题与定理,解题时注意:判断一件事情的语句,叫做命题.有些命题的正确性是用推理证实的,这样的真命题叫做定理.
4、D
【解析】
【分析】
先求出1千米的耗油量,再求行驶x千米的耗油量,最后求油箱中剩余的油量即可.
【详解】
解:∵每千米的耗油量为:60×÷100=0.12(升/千米),
∴y=60-0.12x,
故选:D.
【点睛】
本题考查了函数关系式,求出1千米的耗油量是解题的关键.
5、B
【解析】
【分析】
当直线y=kx−1过点A时,求出k的值,当直线y=kx−1过点B时,求出k的值,介于二者之间的值即为使直线y=kx−1与线段AB有交点的x的值.
【详解】
解:①当直线y=kx−1过点A时,将A(−2,1)代入解析式y=kx−1得,k=−1,
②当直线y=kx−1过点B时,将B(1,2)代入解析式y=kx−1得,k=3,
∵|k|越大,它的图象离y轴越近,
∴当k≥3或k≤-1时,直线y=kx−1与线段AB有交点.
故选:B.
【点睛】
本题考查了两直线相交或平行的问题,解题的关键是掌握AB是线段这一条件,不要当成直线.
6、A
【解析】
【分析】
根据函数图象可知图象经过一、二、三象限,即可判断A选项,从图象上无法得知与轴的交点坐标,无法求得方程的解,即可判断B选项,根据图象与轴的交点,可知,进而可知,即可判断C选项,根据图象经过一、二、三象限,,即可知随的增大而增大,进而判断D选项
【详解】
A. 图像经过一、二、三象限,故该选项正确,符合题意;
B. 关于方程的解不一定是,不正确,不符合题意
C. 根据图象与轴的交点,可知,则,故该选项不正确,不符合题意;
D. 图象经过一、二、三象限,,随的增大而增大,故该选项不正确,不符合题意;
故选A
【点睛】
本题考查了一次函数图象的性质,与坐标轴交点问题,增减性,熟练掌握一次函数图象的性质是解题的关键.
7、A
【解析】
【分析】
利用一次函数y随x的增大而减小,可得,即可求解.
【详解】
∵当x1<x2时,y1>y2
∴一次函数y=(k)x+2的y随x的增大而减小
∴
∴
∴k的值可能是0
故选:A.
【点睛】
本题考查了一次函数图象上点的坐标特征,解题关键是利用一次函数图象上点的坐标特征,求出.
8、C
【解析】
【分析】
根据题意和函数图象中的数据,可以判断各个小题中的结论是否正确,从而可以解答本题.
【详解】
解:A、根据图象可得乙比甲提前出发1h,故选项A说法正确,不符合题意;
B、甲行驶的速度为20÷(1.5-1)=40km/h,故选项B说法正确,不符合题意;
C、乙行驶的速度为
∴3h时,甲、乙两人相距,故选项C说法错误,符合题意;
D、;
∴0.75h或1.125h时,乙比甲多行驶10km,
∴选项D说法正确,不符合题意.
故选C.
【点睛】
本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答
9、D
【解析】
【分析】
把点(-1,2)代入正比例函数y=mx即可求解.
【详解】
解:∵正比例函数y=mx的图象经过点(-1,2),
∴-m=2,
∴m=-2,
∴这个函数解析式为y=-2x.
故选:D
【点睛】
本题考查了待定系数法求正比例函数解析式,理解待定系数法,把点的坐标代入函数解析式是解题关键.
10、C
【解析】
【分析】
观察图象,可知当x<0.5时,y=kx+b>0,y=mx+n<0;当0.5<x<2时,y=kx+b<0,y=mx+n<0;当x>2时,y=kx+b<0,y=mx+n>0,二者相乘为正的范围是本题的解集.
【详解】
解:由图象可得,
当x>2时,(kx+b)<0,(mx+n)>0,则(kx+b)(mx+n)<0,故A错误;
当0<x<2时,kx+b<0,mx+n<0,(kx+b)(mx+n)>0,但是没有包含所有使得(kx+b)(mx+n)>0的解集,故B错误;
当时,kx+b<0,mx+n<0,故(kx+b)(mx+n)>0,且除此范围之外都不能使得(kx+b)(mx+n)>0,故C正确;
当x<0.5时,y=kx+b>0,y=mx+n<0;当x>2时,y=kx+b<0,y=mx+n>0,则(kx+b)(mx+n)<0,故D错误;
故选:C.
【点睛】
本题考查了利用函数图象来解一元一次不等式,数形结合是解答本题的关键.
二、填空题
1、3
【解析】
【分析】
根据点的纵坐标的绝对值是点到轴的距离,可得答案.
【详解】
在平面直角坐标系中,点P(2,﹣3)到轴的距离为3.
故答案为:3.
【点睛】
本题考查了点的坐标,点的纵坐标的绝对值是点到轴的距离,横坐标的绝对值是点到轴的距离.
2、-4
【解析】
【分析】
在轴上点的坐标,横坐标为,可知,进而得到的值.
【详解】
解:在轴上
故答案为:.
【点睛】
本题考察了坐标轴上点坐标的特征.解题的关键在于理解轴上点坐标的形式.在轴上点的坐标,横坐标为;在轴上点的坐标,纵坐标为.
3、V=100h
【解析】
【分析】
根据体积公式:体积=底面积×高进行填空即可.
【详解】
解:V与h的关系为V=100h;
故答案为:V=100h.
【点睛】
本题主要考查了列函数关系式,题目比较简单.
4、
【解析】
【分析】
把(a,2)代入y=-2x中,求得a值,把交点的坐标转化为方程组的解即可.
【详解】
∵函数y=mx+3与y=的图象交于点A(a,2),
∴-2a=2,
解得a=-1,
∴A(-1,2),
∴方程组的解为,
故答案为:.
【点睛】
本题考查了一次函数的交点与二元一次方程组的关系,正确理解一次函数解析式的交点坐标与由解析式构成的二元一次方程组的解的关系是解题的关键.
5、(,3)##(,3)
【解析】
【分析】
过A点作AB⊥y轴于B点,作AC⊥x轴于C点,由于射线OA将由边长为1的7个小正方形组成的图案的面面积分成相等的两部分,所以两边的面积分别为3.5,△AOB面积为5.5,即OB×AB=5.5,可解AB,则A点坐标可求.
【详解】
解:过A点作AB⊥y轴于B点,作AC⊥x轴于C点,
则AC=OB,AB=OC.
∵正方形的边长为1,
∴OB=3.
∵射线OA将由边长为1的7个小正方形组成的图案的面面积分成相等的两部分,
∴两边的面积分别为3.5.
∴△AOB面积为3.5+2=5.5,即OB×AB=5.5,
×3×AB=5.5,解得AB=.
所以点A坐标为(,3).
故答案为:(,3).
【点睛】
本题主要考查了点的坐标、三角形面积,解题的关键是过某点作x轴、y轴的垂线,垂线段长度再转化为点的坐标.
三、解答题
1、(1)450;y1=﹣150x+450,2;(2)①或4;②见解析.
【解析】
【分析】
(1)由一次函数的图象可得甲、乙两地之间的距离为450km,设线段AB的解析式为y1=k1x+b1,利用待定系数法可得出AB的解析式,根据路程、时间和速度的关系即可得答案;
(2)根据题意得出函数解析式为S=,①把S=300代入解析式分别求出x的值即可;②根据题意得出函数解析式,画出函数的图象即可.
【详解】
解:(1)由图象可得:甲、乙两地之间的距离为450km;
设线段AB的解析式为y1=k1x+b1,
∵A(0,450),B(3,0),
∴,
解得:,
∴线段AB的解析式为y1=450﹣150x(0≤x≤3);
设两车在慢车出发x小时后相遇,
()x=450,
解得:x=2,
答:两车在慢车出发2小时后相遇.
故答案为:450;y1=﹣150x+450;2;
(2),
根据题意得出S与慢车行驶时间x(h)的函数关系式如下:S=,
①当0≤x<2时,S=450x=300,
解得:x=,
当2≤x<3时,S=x=300,
解得:x=(舍去),
当3≤x≤6时,S=75x=300,
解得:x=4,
综上所述:x的值为或4.
②其图象为折线图如下:
【点睛】
本题考查一次函数的应用及待定系数法求一次函数解析式,从函数图象中正确得出所需信息是解题关键.
2、(1)y=x,;(2)7.5
【解析】
【分析】
(1)根据A的坐标先求出正比例函数的解析式,再根据已知条件求出点B的坐标,进而可得一次函数解析式;
(2)由A点坐标可求得A到y轴的距离,根据三角形面积公式可求得S.
【详解】
解:(1)∵A(3,4),
∴OA=,
∴OB= OA=5
∴ B(-5,0)
设正比例函数的解析式为y=mx,∵正比例函数的图象过A(3,4)
∴4=3m,m=,
∴正比例函数的解析式为y=x;
设一次函数的解析式为y=kx+b,
∵过A(3,4)、B(-5,0)
∴.
解得:.
∴一次函数的解析式为;
(2)∵A(3,4),B(-5,0),
∴三角形AOB的面积为5×3×=7.5.
【点睛】
主要考查了用待定系数法解函数解析式和一次函数图象的性质,还考查了学生的分析能力和读图能力.
3、(1)证明见解析,(2)(8,2).
【解析】
【分析】
(1)过点C作CQ⊥OA于Q,证△CQA≌△BOA,即可证明点A为线段BC的中点;
(2)过点C作CR⊥OB于R,过点D作DS⊥OB于S,证△CRB≌△BSD,根据全等三角形对应边相等即可求点D的坐标.
【详解】
(1)证明:过点C作CQ⊥OA于Q,
∵点B的坐标是,点C的坐标为,
∴CQ=OB=4,
∵∠CQO=∠BOA=90°,∠CAQ=∠BAO,
∴△CQA≌△BOA,
∴CA=AB,
∴点A为线段BC的中点.
(2)过点C作CR⊥OB于R,过点D作DS⊥OB于S,
∵,
∴∠CRB=∠DSB=∠CBD=90°,
∴∠CBR+∠SBD=90°,∠SDB+∠SBD=90°,
∴∠CBR=∠SDB,
∵,
∴∠BCD=∠BDC=45°,
∴CB=DB,
∴△CRB≌△BSD,
∴CR=SB,RB=DS,
∵点B的坐标是,点C的坐标为,
∴CR=SB=6,RB=DS=8,
∴OS=SB-OB=2,
点D的坐标为(8,2).
【点睛】
本题考查了全等三角形的判定与性质和点的坐标,解题关键是树立数形结合思想,恰当作辅助线,构建全等三角形.
4、(1),;(2)
【解析】
【分析】
(1)将点代入直线确定m,再将点C代入即可确定n的值;
(2)利用函数解析式可得:,,结合图形可得,三角形的高为点C的纵坐标,代入三角形面积公式求解即可得.
【详解】
解:(1)∵点在直线上,
,
,
在直线上,
,
,
,;
(2)由题意得:,
对于直线,令,得,
,
对于直线,令,得,
,
,
,
,
,
,
∴t的值为6.
【点睛】
题目主要考查利用待定系数法确定一次函数解析式,与坐标轴围成的面积等,理解题意,熟练运用一次函数的性质是解题关键.
5、(1)y甲=-5x+10,y乙=4x-2;(2)相遇时甲离B地为km;(3)或.
【解析】
【分析】
(1)找出直线l1、l2经过的两点坐标,两用待定系数法求出直线解析式即可;
(2)联立方程组,求出方程组的解即可;
(3)分相遇前和相遇后相距5千米列出方程求解即可.
【详解】
解:(1)设直线l1的解析式为
∵直线l1过点(2,0),(0,10)
∴代入解析式得,
解得,
∴直线l1的解析式为
设直线l2的解析式为
∵直线l2过点(0.5,0),(3,10)
∴代入解析式得,
解得,
∴直线l2的解析式为.
(2)由图象可知甲速度为10÷2=5km/h,乙速度为10÷(3-0.5)=4km/h,
设甲出发后x小时相遇,则乙行驶(x-0.5)小时,根据题意得
4(x-0.5)+5x=10,
解得x=.
当x=时,y甲=-5×+10=,
∴相遇时甲离B地为km.
故答案为:,
(3)由题意知:①或②
解得,或
所以,甲出发或小时后,甲、乙两人相距5千米.
故答案为:或.
【点睛】
本题主要考查了一次函数的应用问题,在解题时要根据图形列出方程是解题的关键.
2020-2021学年第十四章 一次函数综合与测试达标测试: 这是一份2020-2021学年第十四章 一次函数综合与测试达标测试,共27页。试卷主要包含了若一次函数y=kx+b等内容,欢迎下载使用。
北京课改版八年级下册第十四章 一次函数综合与测试一课一练: 这是一份北京课改版八年级下册第十四章 一次函数综合与测试一课一练,共24页。试卷主要包含了已知点,点P在第二象限内,P点到x等内容,欢迎下载使用。
北京课改版八年级下册第十四章 一次函数综合与测试综合训练题: 这是一份北京课改版八年级下册第十四章 一次函数综合与测试综合训练题,共28页。试卷主要包含了下面哪个点不在函数的图像上.,一次函数的一般形式是等内容,欢迎下载使用。