北京课改版八年级下册第十四章 一次函数综合与测试一课一练
展开这是一份北京课改版八年级下册第十四章 一次函数综合与测试一课一练,共24页。试卷主要包含了已知点,点P在第二象限内,P点到x等内容,欢迎下载使用。
京改版八年级数学下册第十四章一次函数定向测评
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在探究“水沸腾时温度变化特点”的实验中,下表记录了实验中温度和时间变化的数据.
时间/分钟 | 0 | 5 | 10 | 15 | 20 | 25 |
温度/℃ | 10 | 25 | 40 | 55 | 70 | 85 |
若温度的变化是均匀的,则18分钟时的温度是( )
A.62℃ B.64℃ C.66℃ D.68℃
2、甲、乙两名运动员在笔直的公路上进行自行车训练,行驶路程S(千米)与行驶时间t(小时)之间的关系如图所示,下列四种说法:①甲的速度为40千米/时;②乙的速度始终为50千米/时;③行驶1小时时,乙在甲前10千米处;④甲、乙两名运动员相距5千米时,t =0.5或t =2或t =4,其中正确的是( )
A.①③ B.①④ C.①②③ D.①③④
3、如图,在一个单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,,是斜边在x轴上,斜边长分别为2,4,6,...的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2021的横坐标为( )
A.-1008 B.-1010 C.1012 D.-1012
4、自2021年9月16日起,合肥市出租车价格调整,调整后的价格如图所示,根据图中的数据,下列说法不正确的是( )
A.出租车的起步价为10元 B.超过起步价以后,每公里加收2元
C.小明乘坐2.8公里收费为10元 D.小丽乘坐10公里,收费25元
5、某油箱容量为60升的汽车,加满汽油后行驶了100千米时,邮箱中的汽油大约消耗了,如果加满后汽车的行驶路程为x千米,邮箱中剩余油量为y升,则y与x之间的函数关系式是( )
A.y=0.12x B.y=60+0.12x C.y=-60+0.12x D.y=60-0.12x
6、
7、在平面直角坐标系中,把直线沿轴向右平移两个单位长度后.得到直线的函数关系式为( )
A. B. C. D.
8、已知点(﹣4,y1)、(2,y2)都在直线y=﹣x+b上,则y1和y2的大小关系是( )
A.y1>y2 B.y1=y2 C.y1<y2 D.无法确定
9、点P在第二象限内,P点到x、y轴的距离分别是4、3,则点P的坐标为( )
A.(-4,3) B.(-3,-4) C.(-3,4) D.(3,-4)
10、下列函数中,y随x的增大而减小的函数是( )
A. B.y=6﹣2x C. D.y=﹣6+2x
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、已知函数y=,那么自变量x的取值范围是_________.
2、已知函数f(x)=+x,则f()=_____.
3、已知点在轴上,则________;点的坐标为________.
4、某长途汽车客运公司规定旅客可免费携带一定质量的行李.当行李的质量超过规定时,需付的行李费(元)与行李质量之间满足一次函数关系,部分对应值如下表:
… | 30 | 40 | 50 | … | |
(元) | … | 4 | 6 | 8 | … |
则旅客最多可免费携带行李的质量是______kg.
5、直线y=-x+3向下平移5个单位长度,得到新的直线的解析式是______.
三、解答题(5小题,每小题10分,共计50分)
1、我国传统的计重工具﹣﹣秤的应用,方便了人们的生活,如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x(厘米)时,秤钩所挂物重为y(斤).如表中为若干次称重时所记录的一些数据.
x(厘米) | 1 | 2 | 4 | 8 |
y(斤) | 0.75 | 1.00 | 1.50 | 2.5 |
(1)在图2中将表x,y的数据通过描点的方法表示,观察判断x,y的函数关系,并求秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少斤?
(2)已知秤砣到秤纽的最大水平距离为50厘米,这杆秤的可称物重范围是多少斤?
2、如图,在平面直角坐标系中,直线与x轴,y轴分别交于A,B两点,直线与直线相交于点
(1)求m,n的值;
(2)直线与x轴交于点D,动点P从点D开始沿线段以每秒1个单位的速度向A点运动,设点P的运动时间为t秒.若的面积为12,求t的值.
3、如图1,已知直线y=2x+2与y轴,x轴分别交于A,B两点,以B为直角顶点在第二象限作等腰Rt△ABC
(1)求点C的坐标,并求出直线AC的关系式;
(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.
(3)如图3,在(1)的条件下,直线AC交x轴于点M,P(﹣,k)是线段BC上一点,在x轴上是否存在一点N,使△BPN面积等于△BCM面积的一半?若存在,请求出点N的坐标;若不存在,请说明理由.
4、艺术节前夕,为了增添节日气氛,某校决定采购大小两种型号的气球装扮活动场地,计划购买4盒大气球,x盒小气球().A、B两个商场中,两种型号的气球原价一样,都是大气球50元/盒,小气球10元/盒,但给出了不同的优惠方案:
A商场:买一盒大气球,送一盒小气球;
B商场:一律九折优惠;
(1)分别写出在两个商场购买时需要的花费y(元)与x(盒)之间的关系式;
(2)如果学校最终决定购买10盒小气球,那么选择在哪个商场购买比较合算?
5、寒假将至,某健身俱乐部面向大中学生推出优惠活动,活动方案如下:
方案一:购买一张学生寒假专享卡,每次健身费用按六折优惠;
方案二:不购买学生寒假专享卡,每次健身费用按八折优惠.
设某学生健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.在平面直角坐标系中的函数图象如图所示.
(1)求k1和b的值,并说明它们的实际意义;
(2)求k2的值;
(3)八年级学生小华计划寒假前往该俱乐部健身8次,应选择哪种方案所需费用更少?请说明理由.
(4)小华的同学小琳也计划在该俱乐部健身,若她准备300元的健身费用,最多可以健身多少次?
-参考答案-
一、单选题
1、B
【解析】
【分析】
根据图表可得:温度与时间的关系符合一次函数关系式,设温度T与时间x的函数关系式为:,将,,代入解析式求解确定函数解析式,然后将代入求解即可得.
【详解】
解:根据图表可得:温度与时间的关系符合一次函数关系式,
设温度T与时间x的函数关系式为:,将,,代入解析式可得:
,
解得:,
∴温度T与时间x的函数关系式为:,将其他点代入均符合此函数关系式,
当时,
,
故选:B.
【点睛】
题目主要考查一次函数的应用,理解题意,掌握根据待定系数法确定函数解析式是解题关键.
2、D
【解析】
【分析】
分析图像上每一段表示的实际意义,再根据行程问题计算即可.
【详解】
①甲的速度为,故正确;
②时,已的速度为,后,乙的速度为,故错误;
③行驶1小时时,甲走了40千米,乙走了50千米,乙在甲前10千米处,故正确;
④由①②③得:甲的函数表达式为:,
已的函数表达为:时,,时,,
时,甲、乙两名运动员相距,
时,甲、乙两名运动员相距,
时,甲、乙两名运动员相距为,故正确.
故选:D.
【点睛】
本题为一次函数应用题,此类问题主要通过图象计算速度,即分析每一段表示的实际意义进而求解.
3、C
【解析】
【分析】
首先确定角码的变化规律,利用规律确定答案即可.
【详解】
解:∵各三角形都是等腰直角三角形,
∴直角顶点的纵坐标的长度为斜边的一半,
A3(0,0),A7(2,0),A11(4,0)…,
∵2021÷4=505余1,
∴点A2021在x轴正半轴,纵坐标是0,横坐标是(2021+3)÷2=1012,
∴A2021的坐标为(1012,0).
故选:C
【点睛】
本题是对点的坐标变化规律的考查,根据2021是奇数,求出点的角码是奇数时的变化规律是解题的关键.
4、C
【解析】
【分析】
根据(5,15),(7,19),确定函数的解析式,计算y=10时,x的值,结合生活实际,解答即可.
【详解】
设起步价以后函数的解析式为y=kx+b,
把(5,15),(7,19)代入解析式,得,
解得,
∴y=2x+5,
当y=10时,x=2.5,
当x=10时,y=25,
∴C错误,D正确,B正确,A正确,
故选C.
【点睛】
本题考查了一次函数的实际应用,熟练掌握待定系数法,理解生活意义是解题的关键.
5、D
【解析】
【分析】
先求出1千米的耗油量,再求行驶x千米的耗油量,最后求油箱中剩余的油量即可.
【详解】
解:∵每千米的耗油量为:60×÷100=0.12(升/千米),
∴y=60-0.12x,
故选:D.
【点睛】
本题考查了函数关系式,求出1千米的耗油量是解题的关键.
6、C
【解析】
【分析】
根据第三象限内点的坐标横纵坐标都为负的直接可以判断
【详解】
解:在平面直角坐标系中,点P(﹣2,﹣3)在第三象限
故选C
【点睛】
本题考查了平面直角坐标系中各象限内的点的坐标特征,理解各象限内点的坐标特征是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0.
7、D
【解析】
【分析】
直接根据“上加下减,左加右减”的原则进行解答.
【详解】
解:把直线沿x轴向右平移2个单位长度,可得到的图象的函数解析式是:y=-2(x-2)+3=-2x+7.
故选:D.
【点睛】
本题考查了一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.
8、A
【解析】
【分析】
由题意直接根据一次函数的性质进行分析即可得到结论.
【详解】
解:∵直线y=﹣x+b中,k=﹣<0,
∴y将随x的增大而减小.
∵﹣4<2,
∴y1>y2.
故选:A.
【点睛】
本题考查一次函数的图象性质,注意掌握对于一次函数y=kx+b(k≠0),当k>0,y随x增大而增大;当k<0时,y将随x的增大而减小.
9、C
【解析】
【分析】
点P到x、y轴的距离分别是4、3,表明点P的纵坐标、横坐标的绝对值分别为4与3,再由点P在第二象限即可确定点P的坐标.
【详解】
∵P点到x、y轴的距离分别是4、3,
∴点P的纵坐标绝对值为4、横坐标的绝对值为3,
∵点P在第二象限内,
∴点P的坐标为(-3,4),
故选:C.
【点睛】
本题考查了平面直角坐标系中点所在象限的特点,点到的坐标轴的距离,确定点的坐标,掌握这些知识是关键.要注意:点到x、y轴的距离是此点的纵坐标、横坐标的绝对值,而非横坐标、纵坐标的绝对值.
10、B
【解析】
【分析】
根据一次函数的性质,时,y随x的增大而增大;时,y随x的增大而减小;即可进行判断.
【详解】
解:A、∵k=>0,∴y随x的增大而增大,故本选项错误;
B、∵k=﹣2<0,∴y随x的增大而减小,故本选项正确;
C、∵k=>0,∴y随x的增大而增大,故本选项错误;
D、∵k=2>0,∴y随x的增大而增大,故本选项错误.
故选:B.
【点睛】
本题考查了一次函数的性质,解题的关键是掌握 时,y随x的增大而增大; 时,y随x的增大而减小.
二、填空题
1、
【解析】
【分析】
根据二次根式有意义的条件列出不等式,解不等式得到答案.
【详解】
解:由题意得,,
解得,,
故答案为:.
【点睛】
本题考查的是函数自变量的取值范围的确定,掌握二次根式的被开方数的非负数是解题的关键.
2、
【解析】
【分析】
根据题意直接把x=代入解析式进行计算即可求得答案.
【详解】
解:∵函数f(x)=+x,
∴f()=+=2,
故答案为:2.
【点睛】
本题考查函数图象上点的坐标特征以及二次根式运算,注意掌握图象上点的坐标适合解析式.
3、
【解析】
【分析】
根据轴上的点,纵坐标为0,求出m值即可.
【详解】
解:∵点在轴上,
∴,
解得,,
则;
点的坐标为(-2,0);
故答案为:-3,(-2,0).
【点睛】
本题考查了坐标轴上点的坐标特征,解题关键是明确轴上的点,纵坐标为0.
4、10
【解析】
【分析】
利用待定系数法求一次函数解析式,令y=0时求出x的值即可.
【详解】
解:∵y是x的一次函数,
∴设y=kx+b(k≠0)
将x=30,y=4;x=40,y=6分别代入y=kx+b,得
,
解得:,
∴函数表达式为y=0.2x-2,
当y=0时,0=0.2x-2,解得x=10,
∴旅客最多可免费携带行李的质量是10kg,
故答案为:10.
【点睛】
本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知函数值求自变量.
5、y=-x-2
【解析】
【分析】
根据平移的性质“左加右减,上加下减”,即可求出平移后的直线解析式.
【详解】
解:直线y=-x+3向下平移5个单位长度,得到新的直线的解析式是y=-x+3-5=y=-x-2.
故答案为:y=-x-2.
【点睛】
本题考查的是一次函数图象的平移,熟练掌握“左加右减,上加下减”是解答本题的关键.
三、解答题
1、(1)y=x+,杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是4.5斤;(2)0≤y≤13
【解析】
【分析】
(1)画出各点,根据图象判断是一次函数,利用待定系数法求解析式,代入数值计算即可;
(2)把把x=50代入解析式,求出最大物重即可确定范围.
【详解】
解:(1)描点如图所示,这些点在一条直线上,故x,y的函数关系是一次函数,
设x,y的函数关系式:y=kx+b,
∵当x=2时,y=1;x=4时,y=1.5;
∴,
解得k=,b=,
∴x,y的函数关系式:y=x+,
把x=16代入:y=x+,
得y=4.5,
∴杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是4.5斤;
(2)把x=50代入y=x+,
得y=13,
∴0≤y≤13,
∴这杆秤的可称物重范围是0≤y≤13.
【点睛】
本题考查了一次函数的应用,掌握一次函数解析式的求法是解题关键.
2、(1),;(2)
【解析】
【分析】
(1)将点代入直线确定m,再将点C代入即可确定n的值;
(2)利用函数解析式可得:,,结合图形可得,三角形的高为点C的纵坐标,代入三角形面积公式求解即可得.
【详解】
解:(1)∵点在直线上,
,
,
在直线上,
,
,
,;
(2)由题意得:,
对于直线,令,得,
,
对于直线,令,得,
,
,
,
,
,
,
∴t的值为6.
【点睛】
题目主要考查利用待定系数法确定一次函数解析式,与坐标轴围成的面积等,理解题意,熟练运用一次函数的性质是解题关键.
3、(1)C(﹣3,1),y=x+2;(2)见解析;(3)存在,点N(﹣,0)或(,0)
【解析】
【分析】
(1)过点C作CH⊥x轴于点H,根据直线y=2x+2与y轴,x轴分别交于A,B两点,可得点A、B的坐标分别为:(0,2)、(﹣1,0),再证得△CHB≌△BOA,可得BH=OA=2,CH=OB,即可求解;
(2)过点C作CH⊥x轴于点H,DF⊥x轴于点F,DG⊥y轴于点G,可先证明△BCH≌△BDF,得到BF=BH,再由B(-1,0),C(﹣3,1),可得到OF=OB=1,从而得到 DG=OB=1,进而证得△BOE≌△DGE,即可求证;
(3)先求出直线BC的表达式为,可得k= ,再求出点M(﹣6,0),从而得到S△BMC,S△BPN,即可求解.
【详解】
解:(1)过点C作CH⊥x轴于点H,
令x=0,则y=2,令y=0,则x=﹣2,则点A、B的坐标分别为:(0,2)、(﹣1,0),
∵∠HCB+∠CBH=90°,∠CBH+∠ABO=90°,
∴∠ABO=∠BCH,
∵∠CHB=∠BOA=90°,BC=BA,
∴△CHB≌△BOA(AAS),
∴BH=OA=2,CH=OB,则点C(﹣3,1),
设直线AC的表达式为y=mx+b ,
将点A、C的坐标代入一次函数表达式:y=mx+b得:
,解得:,
故直线AC的表达式为:y=x+2;
(2)如图,过点C作CH⊥x轴于点H,DF⊥x轴于点F,DG⊥y轴于点G,
∵AC=AD,AB⊥CB,
∴BC=BD,
∵∠CBH=∠FBD,
∴△BCH≌△BDF,
∴BF=BH,
∵C(﹣3,1),
∴OH=3,
∵B(-1,0),
∴OB=1, BF=BH=2,
∴OF=OB=1,
∴DG=OB=1,
∵∠OEB=∠DEG,
∴△BOE≌△DGE,
∴BE=DE;
(3)设直线BC的解析式为 ,
把点C(﹣3,1),B(﹣1,0),代入,得:
,解得: ,
∴直线BC的表达式为:,
将点P坐标代入直线BC的表达式得:k= ,
∵直线AC的表达式为:y=x+2,
∴点M(﹣6,0),
∴S△BMC=MB×yC=×5×1=,
∴S△BPN=S△BCM==NB×=NB,
解得:NB=,
故点N(﹣,0)或(,0).
【点睛】
本题主要考查了求一次函数解析式,等腰三角形的性质,一次函数的性质和图象,熟练掌握利用待定系数法求一次函数解析式,等腰三角形的性质,一次函数的性质和图象是解题的关键.
4、(1)A:,B:;(2)A商场更合算
【解析】
【分析】
(1)利用购买大气球盒数×单价+小气球去掉赠送的还需购买的盒数×单价列函数关系得出A商场花费,用购买大气球盒数×单价+小气球购买的盒数×单价之和九折列函数关系得出B商场花费即可;
(2)先求A、B两商场花费函数的值,比较大小即可.
【详解】
解:(1)A:,
B:;
(2)当时,A:元,
B:元,
∵,
∴选择在A商场购买比较合算.
【点睛】
本题考查列函数解析式,函数值,比较大小,掌握列函数解析式的方法,求函数值的注意事项是解题关键.
5、(1),实际意义见解析;(2)20;(3)选择方案一所需费用更少,理由见解析;(4)小琳最多健身18次,理由见解析
【解析】
【分析】
(1)把点(0,30),(10,180)代入y1=k1x+b,得到关于k1和b的二元一次方程组,求解即可;
(2)根据方案一每次健身费用按六折优惠,可得打折前的每次健身费用,再根据方案二每次健身费用按八折优惠,求出k2的值;
(3)将x=8分别代入y1、y2关于x的函数解析式,比较即可.
(4)分别求解小琳选择方案一,方案二的健身次数,再比较即可得到答案.
【详解】
解:(1)∵过点(0,30),(10,180),
∴,解得:,
表示的实际意义是:购买一张学生暑期专享卡后每次健身费用为15元,
b=30表示的实际意义是:购买一张学生暑期专享卡的费用为30元;
(2)由题意可得,打折前的每次健身费用为15÷0.6=25(元),
则k2=25×0.8=20;
(3)选择方案一所需费用更少.理由如下:
由题意可知,y1=15x+30,y2=20x.
当健身8次时, 选择方案一所需费用:y1=15×8+30=150(元),
选择方案二所需费用:y2=20×8=160(元),
∵150<160,
∴选择方案一所需费用更少.
(4)当时,
解得:
即小琳选择方案一时,可以健身18次,
当时,则
解得:
即小琳选择方案二时,可以健身15次,
所以小琳最多健身18次.
【点睛】
本题考查了一次函数的应用,最优化选择问题,解题的关键是理解两种优惠活动方案,求出y1、y2关于x的函数解析式.
相关试卷
这是一份2020-2021学年第十四章 一次函数综合与测试达标测试,共27页。试卷主要包含了若一次函数y=kx+b等内容,欢迎下载使用。
这是一份初中第十四章 一次函数综合与测试达标测试,共27页。试卷主要包含了已知点等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试课后复习题,共27页。试卷主要包含了如图,一次函数y=kx+b,,两地相距80km,甲等内容,欢迎下载使用。