北京课改版八年级下册第十四章 一次函数综合与测试课时作业
展开
这是一份北京课改版八年级下册第十四章 一次函数综合与测试课时作业,共24页。试卷主要包含了已知点A等内容,欢迎下载使用。
京改版八年级数学下册第十四章一次函数同步测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、一次函数y=mx﹣n(m,n为常数)的图象如图所示,则不等式mx﹣n≥0的解集是( )
A.x≥2 B.x≤2 C.x≥3 D.x≤3
2、如图,在平面直角坐标系中,线段AB的端点为A(﹣2,1),B(1,2),若直线y=kx﹣1与线段AB有交点,则k的值不能是( ).
A.-2 B.2
C.4 D.﹣4
3、甲、乙两车分别从相距280km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,下列说法:①乙车的速度是40千米/时;②甲车从C返回A的速度为70千米/时;③t=3;④当两车相距35千米时,乙车行驶的时间是2小时或6小时,其中正确的有( )
A.1个 B.2个 C.3个 D.4个
4、已知正比例函数y=kx的函数值y随x的增大而减小,则一次函数y=kx-k的图象大致是( )
A. B. C. D.
5、已知点A(x+2,x﹣3)在y轴上,则x的值为( )
A.﹣2 B.3 C.0 D.﹣3
6、如图,直线与分别交轴于点,,则不等式的解集为( ).
A. B. C. D.或
7、直线y=﹣ax+a与直线y=ax在同一坐标系中的大致图象可能是( )
A. B.
C. D.
8、一次函数y=mx+n的图象经过一、二、四象限,点A(1,y1),B(3,y2)在该函数图象上,则( )
A.y1>y2 B.y1≥y2 C.y1<y2 D.y1≤y2
9、如图,在一个单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,,是斜边在x轴上,斜边长分别为2,4,6,...的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2021的横坐标为( )
A.-1008 B.-1010 C.1012 D.-1012
10、函数y=的自变量x的取值范围是( )
A.x≠0 B.x≠1 C.x≠±1 D.全体实数
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、先设出_____,再根据条件确定解析式中_____,从而得出函数解析式的方法,叫待定系数法.
2、平面直角坐标系中,点P(3,-4)到x轴的距离是________.
3、如图,函数和的图象相交于,则不等式的解集为____.
4、点P(2,﹣4)在正比例函数y=kx(k是常数,且k≠0)的图象上,则k=_____.
5、关于x的正比例函数y=(m+2)x,若y随x的增大而增大,则m的取值范围是________.
三、解答题(5小题,每小题10分,共计50分)
1、红太阳大酒店客房部有三人间、双人间和单人间客房,收费数据如下表(例如三人间普通间客房每人每天收费50元).为吸引客源,在五一黄金周期间进行优惠大酬宾,凡团体入住一律五折优惠.一个50人的旅游团在五月二号到该酒店住宿,租住了一些三人间、双人间普通客房,并且每个客房正好住满,一天一共花去住宿费1510元.
普通间(元/人/天)
豪华间(元/人/天)
贵宾间(元/人/天)
三人间
50
100
500
双人间
70
150
800
单人间
100
200
1500
(1)三人间、双人间普通客房各住了多少间?
(2)设三人间共住了x人,则双人间住了 人,一天一共花去住宿费用y元表示,写出y与x的函数关系式;
(3)在直角坐标系内画出这个函数图象;
(4)如果你作为旅游团团长,你认为上面这种住宿方式是不是费用最少?为什么?
2、如图,在平面直角坐标系中,一次函数 图象经过点A(1,4),点B是一次函数的图象与正比例函数 的图象的交点.
(1)求k的值和直线与x轴、y轴的交点C、D的坐标;
(2)求点B的坐标;
(3)求△AOB的面积.
3、疫情期间,乐清市某医药公司计划购进N95型和一次性成人口罩两种款式.若购进N95型10箱和一次性成人口罩20箱,需要32500元;若购进N95型30箱和一次性成人口罩40箱,需要87500元.
(1)N95型和一次性成人口罩每箱进价分别为多少元?
(2)由于疫情严峻急需口罩,老板决定再次购进N95型和一次性成人口罩共80箱,口罩工厂对两种产品进行了价格调整,N95型的每箱进价比第一次购进时提高了10%,一次性成人口罩的每箱进价按第一次进价的八折;如果药店此次用于购进N95型和一次性成人口罩两种型号的总费用不超过115000元,则最多可购进N95型多少箱?
(3)若销售一箱N95型,可获利500元;销售一箱一次性成人口罩,可获利100元,在(2)的条件下,如何进货可使再次购进的口罩获得最大的利润?最大的利润是多少?
4、我国传统的计重工具﹣﹣秤的应用,方便了人们的生活,如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x(厘米)时,秤钩所挂物重为y(斤).如表中为若干次称重时所记录的一些数据.
x(厘米)
1
2
4
8
y(斤)
0.75
1.00
1.50
2.5
(1)在图2中将表x,y的数据通过描点的方法表示,观察判断x,y的函数关系,并求秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少斤?
(2)已知秤砣到秤纽的最大水平距离为50厘米,这杆秤的可称物重范围是多少斤?
5、如图1,在平面直角坐标系中,点,,,给出如下定义:若P为内(不含边界)一点,且AP与的一条边相等,则称P为的友爱点.
(1)在,,中,的友爱点是________;
(2)如图2,若P为内一点,且,求证:P为的友爱点;
(3)直线l为过点,且与轴平行的直线,若直线上存在的三个友爱点,直接写出的取值范围.
-参考答案-
一、单选题
1、D
【解析】
【分析】
观察直线位于x轴及x轴上方的图象所对应的自变量的值即可完成解答.
【详解】
由图象知:不等式的解集为x≤3
故选:D
【点睛】
本题考查了一次函数与一元一次不等式的关系,数形结合是解答本题的关键.
2、B
【解析】
【分析】
当直线y=kx−1过点A时,求出k的值,当直线y=kx−1过点B时,求出k的值,介于二者之间的值即为使直线y=kx−1与线段AB有交点的x的值.
【详解】
解:①当直线y=kx−1过点A时,将A(−2,1)代入解析式y=kx−1得,k=−1,
②当直线y=kx−1过点B时,将B(1,2)代入解析式y=kx−1得,k=3,
∵|k|越大,它的图象离y轴越近,
∴当k≥3或k≤-1时,直线y=kx−1与线段AB有交点.
故选:B.
【点睛】
本题考查了两直线相交或平行的问题,解题的关键是掌握AB是线段这一条件,不要当成直线.
3、B
【解析】
【分析】
由乙车比甲车先出发1小时,与出发地的距离为千米,可判断①,由 千米/时,可判断②,由小时,可得可判断③,利用检验的方法计算当乙车行驶的时间是2小时或6小时时,两车相距的路程可判断④,从而可得答案.
【详解】
解:由函数图象可得:乙车比甲车先出发1小时,与出发地的距离为千米,所以乙车速度为:35千米/时,故①不符合题意;
乙车行驶280千米需要的时间为:小时,
所以甲车返回的速度为:千米/时,故②符合题意;
由小时,所以 故③符合题意,
当乙车行驶2小时时,行驶的路程为:千米,
此时甲车行驶1小时,千米,
所以两车相距:千米,
当乙车行驶6小时时,行驶的路程为千米,距离A地70千米,
此时甲车行驶了4个小时,行驶的路程为千米,此时在返回A地的路上,
距离A地千米,所以两车相距千米,故④不符合题意;
综上:故选B
【点睛】
本题考查的是从函数图象中获取信息,理解点的坐标含义,特别是利用检验的方法判断④,可以化繁为简,都是解本题的关键.
4、C
【解析】
【分析】
由题意易得k<0,然后根据一次函数图象与性质可进行排除选项.
【详解】
解:∵正比例函数y=kx(k≠0)函数值随x的增大而减小,
∴k<0,
∴-k>0,
∴一次函数y=kx-k的图象经过一、二、四象限;
故选:C.
【点睛】
本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.
5、A
【解析】
【分析】
根据y轴上点的横坐标为0列方程求解即可.
【详解】
解:∵点A(x+2,x﹣3)在y轴上,
∴x+2=0,
解得x=-2.
故选:A.
【点睛】
本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键.
6、C
【解析】
【分析】
观察图象,可知当x<0.5时,y=kx+b>0,y=mx+n<0;当0.5<x<2时,y=kx+b<0,y=mx+n<0;当x>2时,y=kx+b<0,y=mx+n>0,二者相乘为正的范围是本题的解集.
【详解】
解:由图象可得,
当x>2时,(kx+b)<0,(mx+n)>0,则(kx+b)(mx+n)<0,故A错误;
当0<x<2时,kx+b<0,mx+n<0,(kx+b)(mx+n)>0,但是没有包含所有使得(kx+b)(mx+n)>0的解集,故B错误;
当时,kx+b<0,mx+n<0,故(kx+b)(mx+n)>0,且除此范围之外都不能使得(kx+b)(mx+n)>0,故C正确;
当x<0.5时,y=kx+b>0,y=mx+n<0;当x>2时,y=kx+b<0,y=mx+n>0,则(kx+b)(mx+n)<0,故D错误;
故选:C.
【点睛】
本题考查了利用函数图象来解一元一次不等式,数形结合是解答本题的关键.
7、D
【解析】
【分析】
若y=ax过第一、三象限,则a>0,所以y=-ax+a过第一、二、四象限,可对A、B进行判断;若y=ax过第二、四象限,则a<0,-a>0,,所以y=-ax+a过第一、三、四象限,与y轴的交点在y轴负半轴,则可对C、D进行判断.
【详解】
解:A、y=ax过第一、三象限,则a>0,所以y=-ax+a过第一、二、四象限,所以A选项不符合题意;
B、y=ax过第一、三象限,则a>0,所以y=-ax+a过第一、二、四象限,所以B选项不符合题意;
C、y=ax过第二、四象限,则a<0,-a>0,所以y=-ax+a过第一、三、四象限,与y轴的交点在y轴负半轴,所以C选项不符合题意;
D、y=ax过第二、四象限,则a<0,-a>0,所以y=-ax+a过第一、三、四象限,与y轴的交点在y轴负半轴,所以D选项符合题意;
故选D.
【点睛】
本题考查了一次函数的图象:一次函数y=kx+b(k≠0)的图象为一条直线,当k>0,图象过第一、三象限;当k<0,图象过第二、四象限;直线与y轴的交点坐标为(0,b).
8、A
【解析】
【分析】
先根据图象在平面坐标系内的位置确定m、n的取值范围,进而确定函数的增减性,最后根据函数的增减性解答即可.
【详解】
解:∵一次函数y=mx+n的图象经过第一、二、四象限,
∴m0
∴y随x增大而减小,
∵1-2
【解析】
【分析】
先根据正比例函数的性质列出关于m的不等式,求出m的取值范围即可.
【详解】
解:∵正比例函数中,y随x的增大而增大,
∴>0,
解得.
故答案为;.
【点睛】
本题考查的是正比例函数的性质,即正比例函数y=kx(k≠0)中,当k>0时,y随x的增大而增大.
三、解答题
1、(1)三人间8间,双人间13间;(2)(50﹣x),y=﹣10x+1750(0≤x<50,且x为整数);(3)见解析;(4)不是费用最少的,理由是y随x的增大而减小,所以最小值是x=48时费用1270元
【解析】
【分析】
①分别设三人间和双人间为m、n,根据人数和钱数列方程组求解;
②根据收费列出表达式整理即可;
③因为x为人数,并且房间刚好住满所以应该是3的倍数,又剩下的人住双人间所以是2的倍数,因此x应该为6的倍数.
【详解】
解:(1)设租住三人间m间,双人间n间,根据题意
,
解得,
∴三人间8间,双人间13间;
(2)双人间住了(50﹣x)人,
根据题意y=[50x+70(50﹣x)]×50%
即y=﹣10x+1750(0≤x<50,且x为整数);
(3)因为两种房间正好住满所以x的值为3的倍数而(50﹣x)还是2的倍数
因此,所作图象上一些点:(0,1750),(6,1690),(12,1630),(18,1570),(24,1510),(30,1450),(36,1390),(42,1330),(48,1270)
(4)不是费用最少的,理由是y随x的增大而减小,所以最小值是x=48时费用1270元.
【点睛】
本题主要考查二元一次方程组的实际应用,一次函数的实际应用,解题的关键在于能正确理解题意.
2、(1)C(5, 0 ), D(O,5 );(2)B点坐标是(3,2);(3)5
【解析】
【分析】
(1)直接把A点坐标代入y=kx+5可求出k的值,再求直线与x轴、y轴的交点C、D的坐标即可;
(2)根据两直线相交的问题,通过解方程组可得到B点坐标;
(3)先求出直线AB与x轴的交点C的坐标,然后利用S△AOB=S△AOC-S△BOC进行计算.
【详解】
解:(1)把A(1,4)代入y=kx+5得k+5=4,
解得k=-1;
则一次函数解析式为y=-x+5,
令x=0,则y=5;令y=0,则x=5;
∴点C的坐标为(5,0),点D的坐标为(0,5);
(2)解方程组y=-x+5y=23x,得x=3y=2,
所以点B坐标为(3,2);
(3)∵点C的坐标为(5,0),点A的坐标为(1,4),点B坐标为(3,2),
∴S△AOB=S△AOC-S△BOC
=×5×4-×5×2
=5.
【点睛】
本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.
3、(1)N95型和一次性成人口罩每箱进价分别为2250元、500元;(2)最多可购进N95型40箱;(3)采购N95型40个,一次性成人口罩40个可获得最利润为24000元.
【解析】
【分析】
(1)设N95型每箱进价x元,一次性成人口罩每箱进价y元,依题意得10x+20y=32500,30x+40y=87500,联立求解即可;
(2)设购进N95型a箱,依题意得:2250×(1+10%)a+500×80%×(80-a)≤115000,求出a的范围,结合a为正整数可得a的最大值;
(3)设购进的口罩获得最大的利润为w,依题意得:w=500a+100(80-a),然后对其进行化简,结合一次函数的性质进行解答.
【详解】
(1)解:设N95型每箱进价x元,一次性成人口罩每箱进价y元,依题意得:
{10x+20y=3250030x+40y=87500 ,解得: {x=2250y=500 ,
答:N95型和一次性成人口罩每箱进价分别为2250元、500元.
(2)解:设购进N95型a箱,则一次性成人口罩为(80﹣a)套,依题意得:
2250(1+10%)a+500×80%(80﹣a)≤115000 .
解得:a≤40.∵a取正整数,0<a≤40.
∴a的最大值为40.
答:最多可购进N95型40箱.
(3)解:设购进的口罩获得最大的利润为w,
则依题意得:w=500a+100(80﹣a)=400a+8000,
又∵0<a≤40,∴w随a的增大而增大,
∴当a=40时,W=400×40+8000=24000元.
即采购N95型40个,一次性成人口罩40个可获得最利润为24000元.
答:最大利润为24000元.
【点睛】
本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)根据各数量之间的关系,找出w关于a的函数关系式.
4、(1)y=x+,杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是4.5斤;(2)0≤y≤13
【解析】
【分析】
(1)画出各点,根据图象判断是一次函数,利用待定系数法求解析式,代入数值计算即可;
(2)把把x=50代入解析式,求出最大物重即可确定范围.
【详解】
解:(1)描点如图所示,这些点在一条直线上,故x,y的函数关系是一次函数,
设x,y的函数关系式:y=kx+b,
∵当x=2时,y=1;x=4时,y=1.5;
∴,
解得k=,b=,
∴x,y的函数关系式:y=x+,
把x=16代入:y=x+,
得y=4.5,
∴杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是4.5斤;
(2)把x=50代入y=x+,
得y=13,
∴0≤y≤13,
∴这杆秤的可称物重范围是0≤y≤13.
【点睛】
本题考查了一次函数的应用,掌握一次函数解析式的求法是解题关键.
5、(1)P1、P2;(2)见解析;(3)0<m<2
【解析】
【分析】
(1)根据A(x1,y1)、和B(x2,y2)之间的距离公式AB=以及友爱点定义解答即可;
(2)由题意易知∠OAB=∠OCA=∠OCB=45°,进而可求得∠PAC=∠OCP=30°,则可得出∠ACP=∠APC=75°,根据等角对等边和友爱点定义即可证得结论;
(3)由题意,△ABC在友爱点P满足AP=BP或AP=PC或AP=BC=AC三种情况,分别讨论求解即可.
【详解】
解:(1)∵点,关于y轴对称,点在y轴上,
∴AP1=BP1,故P1是的友爱点;
∵AP2= ,CP2= ,
∴AP2= CP2,故P1是的友爱点;
∵AP3=,CP3=,
BP3=,BC=,
∴故P3不是的友爱点,
综上,的友爱点是P1、P2,
故答案为:P1、P2;
(2)∵点,,,
∴OA=OB=OC,AC= BC, ∠BOC=90°,
∴∠OAB=∠OCA=∠OCB=45°,
∵,
∴∠PAC=∠OCP=30°,
∴∠ACP=45°+30°=75°,
∴∠APC=180°-∠PAC-∠ACP=180°-30°-75°=75°,
∴∠ACP=∠APC,
∴AP=AC=BC,
∴P为的友爱点;
(3)由题意,△ABC的友爱点P满足AP=BP或AP=PC或AP=BC三种情况,
若AP=BP,则点P在线段AB的垂直平分线上,即点P在y轴线段OC上,
若AP=PC,则点P在线段AC的垂直平分线上;
若AP=BC,则点P在以点A为圆心,BC即AC长为半径的圆上,
如图,设AC的中点为G,则G的坐标为(-2,2),
由图可知,当直线l为过点G和过点且与轴平行的直线在x轴之间时,直线上存在的三个友爱点,
∴m的取值范围为0<m<2.
【点睛】
本题考查两点之距离坐标公式、线段垂直平分线的判定与性质、等腰三角形的判定与性质、三角形的内角和定理、圆的定义、坐标与图形等知识,理解题中定义,熟练掌握相关知识的联系与运用,利用数形结合的思想解决问题是解答的关键.
相关试卷
这是一份2020-2021学年第十四章 一次函数综合与测试课后测评,共22页。
这是一份北京课改版八年级下册第十四章 一次函数综合与测试课后测评,共24页。试卷主要包含了下列命题中,真命题是,下列命题为真命题的是等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试同步达标检测题,共22页。试卷主要包含了在平面直角坐标系中,点P,点A个单位长度.等内容,欢迎下载使用。