终身会员
搜索
    上传资料 赚现金

    2022年最新京改版八年级数学下册第十四章一次函数综合测评试题(含解析)

    立即下载
    加入资料篮
    2022年最新京改版八年级数学下册第十四章一次函数综合测评试题(含解析)第1页
    2022年最新京改版八年级数学下册第十四章一次函数综合测评试题(含解析)第2页
    2022年最新京改版八年级数学下册第十四章一次函数综合测评试题(含解析)第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京课改版八年级下册第十四章 一次函数综合与测试课后作业题

    展开

    这是一份北京课改版八年级下册第十四章 一次函数综合与测试课后作业题,共29页。试卷主要包含了下列命题为真命题的是,点P的坐标为,下列命题中,真命题是,,两地相距80km,甲等内容,欢迎下载使用。


    京改版八年级数学下册第十四章一次函数综合测评
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、在平面直角坐标系中,任意两点,,,.规定运算:①,;②;③当,且时,.
    有下列三个命题:
    (1)若,,则,;
    (2)若,则;
    (3)对任意点,,,均有成立.
    其中正确命题的个数为( )
    A.0个 B.1个 C.2个 D.3个
    2、一次函数y=kx+b的图象如图所示,则下列说法错误的是(  )

    A.y随x的增大而减小
    B.k<0,b<0
    C.当x>4时,y<0
    D.图象向下平移2个单位得y=﹣x的图象
    3、一次函数y=mx+n的图象经过一、二、四象限,点A(1,y1),B(3,y2)在该函数图象上,则( )
    A.y1>y2 B.y1≥y2 C.y1<y2 D.y1≤y2
    4、下列命题为真命题的是( )
    A.过一点有且只有一条直线与已知直线平行
    B.在同一平面内,若,,则
    C.的算术平方根是9
    D.点一定在第四象限
    5、如图,直线l是一次函数的图象,下列说法中,错误的是( )

    A.,
    B.若点(-1,)和点(2,)是直线l上的点,则
    C.若点(2,0)在直线l上,则关于x的方程的解为
    D.将直线l向下平移b个单位长度后,所得直线的解析式为
    6、关于函数有下列结论,其中正确的是( )
    A.图象经过点
    B.若、在图象上,则
    C.当时,
    D.图象向上平移1个单位长度得解析式为
    7、点P的坐标为(﹣3,2),则点P位于( )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    8、下列命题中,真命题是( )
    A.若一个三角形的三边长分别是a、b、c,则有
    B.(6,0)是第一象限内的点
    C.所有的无限小数都是无理数
    D.正比例函数()的图象是一条经过原点(0,0)的直线
    9、,两地相距80km,甲、乙两人沿同一条路从地到地.甲、乙两人离开地的距离(单位:km)与时间(单位:h)之间的关系如图所示.下列说法错误的是( )

    A.乙比甲提前出发1h B.甲行驶的速度为40km/h
    C.3h时,甲、乙两人相距80km D.0.75h或1.125h时,乙比甲多行驶10km
    10、如图,一次函数y=kx+b(k≠0)的图像经过点A(﹣1,﹣2)和点B(﹣2,0),一次函数y=2x的图像过点A,则不等式2x<kx+b≤0的解集为( )

    A.x≤﹣2 B.﹣2≤x<﹣1 C.﹣2<x≤﹣1 D.﹣1<x≤0
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、在平面直角坐标系中,已知两条直线l1:y=2x+m和l2:y=﹣x+n相交于P(1,3).请完成下列探究:
    (1)设l1和l2分别与x轴交于A,B两点,则线段AB的长为 _____.
    (2)已知直线x=a(a>1)分别与l1l2相交于C,D两点,若线段CD长为2,则a的值为 _____.
    2、线段AB=5,AB平行于x轴,A在B左边,若A点坐标为(-1,3),则B点坐标为_____.
    3、学校“青春礼”活动当天,小明和妈妈以不同的速度匀速从家里前往学校,小明害怕集合迟到先出发2分钟,随后妈妈出发,妈妈出发几分钟后,两人相遇,相遇后两人以小明的速度匀速前进,行进2分钟后,通过与妈妈交谈,小明发现忘记穿校服,于是小明立即掉头以原速度的2倍跑回家中,妈妈速度减半,继续匀速赶往学校,小明到家后,花了3分钟换校服,换好校服后,小明再次从家里出发,并以返回时的速度跑回学校,最后小明和妈妈同时到达学校.小明和妈妈之间的距离y与小明出发时间x之间的关系如图所示.则小明家与学校之间的距离是_____米.

    4、函数的定义域是 _____.
    5、已知一次函数y=kx+b,若y随x的增大而减小,且函数图象与y轴交于正半轴,则点P(k,b)在第 _____象限.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,在平面直角坐标系中,点A为y轴正半轴上一点,点B为x轴负半轴上一点,点C为x轴正半轴上一点,OA=OB=m,OC=n,满足m2﹣12m+36+(n﹣2)2=0,作BD⊥AC于D,BD交OA于E.
    (1)如图1,求点B、C的坐标;
    (2)如图2,动点P从B点出发,以每秒2个单位的速度沿x轴向右运动,设点P运动的时间为t,△PEC的面积为S,请用含t的式子表示S,并直接写出t的取值范围;
    (3)如图3,在(2)的条件下,当t=6时,在坐标平面内是否存在点F,使△PEF是以PE为底边的等腰直角三角形,若存在,求出点F的坐标,若不存在,请说明理由.

    2、已知直线l1:y=-x+b与x轴交于点A,直线l2:y=x﹣与x轴交于点B,直线l1、l2交与点C,且C点的横坐标为1.
    (1)求直线l1的解析式;
    (2)过点A作x轴的垂线,若点P为垂线上的一个动点,点Q为y轴上的一个动点,当CP+PQ+QA的值最小时,求此时点P的坐标;
    (3)E点的坐标为(﹣2,0),将直线l1绕点C顺时针旋转,使旋转后的直线l3刚好过点E,过点C作平行于x轴的直l4,点M、N分别为直线l3、l4上的两个动点,是否存在点M、N,使得△BMN是以M点为直角顶点的等腰直角三角形,若存在,直接写出N点的坐标;若不存在,请说明理由.

    3、某商店销售10台A型和20台B型电脑的利润为6400元,销售20台A型和10台B型电脑的利润为5600元.
    (1)求每台A型电脑和B型电脑的销售利润;
    (2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍.设购进A型电脑x台,这100台电脑的销售总利润为y元.
    ①求y关于x的函数关系式;
    ②该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大销售总利润是多少元?
    4、某通讯公司推出①、②两种通讯收费方式供用户选择,其中①有月租费,②无月租费,两种收费方式的通讯时间x(分钟)与收费y(元)之间的函数关系图象均为直线,如图所示.请根据图象回答下列问题:
    (1)当通讯时间为500分钟时,①方式收费    元,
    ②方式收费    元;
    (2)②收费方式中y与x之间的函数关系式是    ;
    (3)如果某用户每月的通讯时间少于200分钟,那么此用户应该选择收费方式是    (填①或②).

    5、疫情期间,乐清市某医药公司计划购进N95型和一次性成人口罩两种款式.若购进N95型10箱和一次性成人口罩20箱,需要32500元;若购进N95型30箱和一次性成人口罩40箱,需要87500元.
    (1)N95型和一次性成人口罩每箱进价分别为多少元?
    (2)由于疫情严峻急需口罩,老板决定再次购进N95型和一次性成人口罩共80箱,口罩工厂对两种产品进行了价格调整,N95型的每箱进价比第一次购进时提高了10%,一次性成人口罩的每箱进价按第一次进价的八折;如果药店此次用于购进N95型和一次性成人口罩两种型号的总费用不超过115000元,则最多可购进N95型多少箱?
    (3)若销售一箱N95型,可获利500元;销售一箱一次性成人口罩,可获利100元,在(2)的条件下,如何进货可使再次购进的口罩获得最大的利润?最大的利润是多少?

    -参考答案-
    一、单选题
    1、D
    【解析】
    【分析】
    根据新的运算定义分别判断每个命题后即可确定正确的选项.
    【详解】
    解:(1)A⊕B=(1+2,2-1)=(3,1),A⊗B=1×2+2×(-1)=0,
    ∴①正确;
    (2)设C(x3,y3),A⊕B=(x1+x2,y1+y2),B⊕C=(x2+x3,y2+y3),
    ∵A⊕B=B⊕C,
    ∴x1+x2=x2+x3,y1+y2=y2+y3,
    ∴x1=x3,y1=y3,
    ∴A=C,
    ∴②正确.
    (3)∵(A⊕B)⊕C=(x1+x2+x3,y1+y2+y3),A⊕(B⊕C)=(x1+x2+x3,y1+y2+y3),
    ∴(A⊕B)⊕C=A⊕(B⊕C),
    ∴③正确.
    正确的有3个,
    故选:D.
    【点睛】
    本题考查了命题与定理,解题时注意:判断一件事情的语句,叫做命题.有些命题的正确性是用推理证实的,这样的真命题叫做定理.
    2、B
    【解析】
    【分析】
    由一次函数的图象的走势结合一次函数与轴交于正半轴,可判断A,B,由图象可得:当x>4时,函数图象在轴的下方,可判断C,先求解一次函数的解析式,再利用一次函数图象的平移可判断D,从而可得答案.
    【详解】
    解:一次函数y=kx+b的图象从左往右下降,所以y随x的增大而减小,故A不符合题意;
    一次函数y=kx+b, y随x的增大而减小,与轴交于正半轴,所以 故B符合题意;
    由图象可得:当x>4时,函数图象在轴的下方,所以y<0,故C不符合题意;
    由函数图象经过
    ,解得:
    所以一次函数的解析式为:
    把向下平移2个单位长度得:,故D不符合题意;
    故选B
    【点睛】
    本题考查的是一次函数的性质,一次函数的平移,利用待定系数法求解一次函数的解析式,掌握“一次函数的图象与性质”是解本题的关键.
    3、A
    【解析】
    【分析】
    先根据图象在平面坐标系内的位置确定m、n的取值范围,进而确定函数的增减性,最后根据函数的增减性解答即可.
    【详解】
    解:∵一次函数y=mx+n的图象经过第一、二、四象限,
    ∴m<0,n>0
    ∴y随x增大而减小,
    ∵1<3,
    ∴y1>y2.
    故选:A.
    【点睛】
    本题主要考查一次函数图象在坐标平面内的位置与k、b的关系、一次函数的增减性等知识点,图象在坐标平面内的位置确定m、n的取值范围成为解答本题的关键.
    4、B
    【解析】
    【分析】
    直接利用平行线的判定和性质、算术平方根的定义以及点的坐标特点分别判断即可.
    【详解】
    解:A、过直线外一点有且只有一条直线与已知直线平行,原命题是假命题;
    B、在同一平面内,如果a⊥b,b⊥c,则a//c,原命题是真命题;
    C、的算术平方根是3,原命题是假命题;
    D、若a=0,则−a2=0,则点(1,−a2)在x轴上,故原命题是假命题;
    故选:B.
    【点睛】
    本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
    5、B
    【解析】
    【分析】
    根据一次函数图象的性质和平移的规律逐项分析即可.
    【详解】
    解:A.由图象可知,,,故正确,不符合题意;
    B. ∵-1<2,y随x的增大而减小,∴,故错误,符合题意;
    C. ∵点(2,0)在直线l上,∴y=0时,x=2,∴关于x的方程的解为,故正确,不符合题意;
    D. 将直线l向下平移b个单位长度后,所得直线的解析式为+b-b=kx,故正确,不符合题意;
    故选B.
    【点睛】
    本题考查了一次函数的图象与性质,以及一次函数的平移,熟练掌握性质和平移的规律是解答本题的关键.
    6、D
    【解析】
    【分析】
    根据题意易得,然后根据一次函数的图象与性质可直接进行排除选项.
    【详解】
    解:A、当x=-1时,则有y=-2×(-1)-2=0,故点不在一次函数的图象上;不符合题意;
    B、∵,∴y随x的增大而减小,若、在图象上,则有,即,故不符合题意;
    C、当y=0时,则有-2x-2=0,解得x=-1,所以当x>-1时,y<0,则当时,,故不符合题意;
    D、图象向上平移1个单位长度得解析式为,正确,故符合题意;
    故选D.
    【点睛】
    本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.
    7、B
    【解析】
    【分析】
    根据平面直角坐标系中四个象限中点的坐标特点求解即可.
    【详解】
    解:∵点P的坐标为(﹣3,2),
    ∴则点P位于第二象限.
    故选:B.
    【点睛】
    此题考查了平面直角坐标系中四个象限中点的坐标特点,解题的关键是熟练掌握平面直角坐标系中四个象限中点的坐标特点:第一象限横坐标为正,纵坐标为正;第二象限横坐标为负,纵坐标为正;第三象限横坐标为负,纵坐标为负;第四象限横坐标为正,纵坐标为负.
    8、D
    【解析】
    【分析】
    根据三角形的三边关系,组平面直角坐标系内点的坐标特征,无理数的定义,正比例函数的定义,逐项判断即可求解.
    【详解】
    解:A、若一个三角形的三边长分别是a、b、c,不一定有,则原命题是假命题,故本选项不符合题意;
    B、(6,0)是 轴上的点,则原命题是假命题,故本选项不符合题意;
    C、无限不循环小数都是无理数,
    D、正比例函数()的图象是一条经过原点(0,0)的直线,则原命题是真命题,故本选项符合题意;
    故选:D
    【点睛】
    本题主要考查了三角形的三边关系,组平面直角坐标系内点的坐标特征,无理数的定义,正比例函数的定义,熟练掌握三角形的三边关系,组平面直角坐标系内点的坐标特征,无理数的定义,正比例函数的定义是解题的关键.
    9、C
    【解析】
    【分析】
    根据题意和函数图象中的数据,可以判断各个小题中的结论是否正确,从而可以解答本题.
    【详解】
    解:A、根据图象可得乙比甲提前出发1h,故选项A说法正确,不符合题意;
    B、甲行驶的速度为20÷(1.5-1)=40km/h,故选项B说法正确,不符合题意;
    C、乙行驶的速度为
    ∴3h时,甲、乙两人相距,故选项C说法错误,符合题意;
    D、;

    ∴0.75h或1.125h时,乙比甲多行驶10km,
    ∴选项D说法正确,不符合题意.
    故选C.
    【点睛】
    本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答
    10、B
    【解析】
    【分析】
    根据图象知正比例函数y=2x和一次函数y=kx+b的图象的交点,即可得出不等式2x<kx+b的解集,根据一次函数y=kx+b的图象与x轴的交点坐标即可得出不等式kx+b≤0的解集是x≥-2,即可得出答案.
    【详解】
    解:∵由图象可知:正比例函数y=2x和一次函数y=kx+b的图象的交点是A(-1,-2),
    ∴不等式2x<kx+b的解集是x<-1,
    ∵一次函数y=kx+b的图象与x轴的交点坐标是B(-2,0),
    ∴不等式kx+b≤0的解集是x≥-2,
    ∴不等式2x<kx+b≤0的解集是-2≤x<-1,
    故选:B.
    【点睛】
    本题考查一次函数和一元一次不等式的应用,能利用数形结合,找到不等式与一次函数图像的关系是解答此题的关键.
    二、填空题
    1、 4.5 ##
    【解析】
    【分析】
    (1)把P(1,3)分别代入直线l1、 l2,求出直线,再求出两直线与x轴的交点,即可求解;
    (2)分别表示出C,D的坐标,根据线段CD长为2,得到关于a的方程,故可求解.
    【详解】
    解:(1)把P(1,3)代入l1:y=2x+m得3=2+m
    解得m=1
    ∴l1:y=2x+1
    令y=0,∴2x+1=0
    解得x=-,
    ∴A(-,0)
    把P(1,3)代入l2:y=﹣x+n得3=-1+n
    解得n=4
    ∴l1:y=﹣x+4
    令y=0,∴﹣x+4=0
    解得x=4,
    ∴B(4,0)
    ∴AB=4-(-)=4.5;
    故答案为:4.5;
    (2)∵已知直线x=a(a>1)分别与l1、l2相交于C,D两点,
    设C点坐标为(a,y1),D点坐标为(a,y2),
    ∴y1=2a+1,y2=﹣a+4
    ∵CD=2

    解得a=或a=
    ∵a>1
    ∴a=.
    故答案为:.
    【点睛】
    此题主要考查一次函数的图像与性质,解题的关键是熟知待定系数法、一次函数的性质特点.
    2、(4,3)
    【解析】
    【分析】
    由题意根据平行于x轴的直线上的点的纵坐标相等求出点B的纵坐标,进而依据A在B左边即可求出点B的坐标.
    【详解】
    解:∵AB∥x轴,A点坐标为(-1,3),
    ∴点B的纵坐标为3,
    当A在B左边时,∵AB=5,
    ∴点B的横坐标为-1+5=4,
    此时点B(4,3).
    故答案为:(4,3).
    【点睛】
    本题考查坐标与图形性质,主要利用了平行于x轴的直线上的点的纵坐标相等.
    3、1760
    【解析】
    【分析】
    根据函数图象可知,小明出发2分钟后走了160米,据此可得小明原来的速度,进而得出小明回时的速度.
    【详解】
    解:小明离家2分钟走了160米,
    ∴小明初始速度为160÷2=80米/分;
    小明返回家速度为80×2=160米/分,妈妈继续行进速度80÷2=40米/分;
    小明在家换衣服3分钟时间,妈妈走了40×3=120米,
    设小明换好衣服离开家到与妈妈同时到达学校的时间为t分,
    则有160t=1200+120+40t,
    ∴t=11,
    ∴小明离家距离为11×160=1760米.
    故答案为:1760米.
    【点睛】
    本题主要是考查了从函数图像获取信息,解题的关键是根据题意正确分析出函数图像中的数据.
    4、x≠0
    【解析】
    【分析】
    由题意直接根据分式有意义的条件即分式的分母不能为0进行分析计算即可.
    【详解】
    解:函数的定义域是:x≠0.
    故答案为:x≠0.
    【点睛】
    本题考查求函数自变量的范围,一般从三个方面考虑:
    (1)当函数表达式是整式时,自变量可取全体实数;
    (2)当函数表达式是分式时,考虑分式的分母不能为0;
    (3)当函数表达式是二次根式时,被开方数非负.
    5、二
    【解析】
    【分析】
    由y随x的增大而减小,利用一次函数的性质可得出k<0,由一次函数y=kx+b的图象与y轴交于正半轴,利用一次函数图象上点的坐标特征可得出b>0,进而可得出点P(k,b)在第二象限.
    【详解】
    解:∵一次函数y=kx+b中y随x的增大而减小,
    ∴k<0,
    ∵一次函数y=kx+b的图象与y轴交于正半轴,
    ∴b>0,
    ∴点P(k,b)在第二象限.
    故答案为:二.
    【点睛】
    本题考查了一次函数的性质,解题的关键是掌握一次函数的性质.
    三、解答题
    1、(1)B(-6,0),C(2,0);(2)S=8-2t(0≤t<4),S=2t-8(t>4);(3)存在,F(4,4)或F(2,-2)
    【解析】
    【分析】
    (1)根据平方的非负性,求得,即可求解;
    (2)根据△OAC≌△OBE求得,分段讨论,分别求解即可;
    (3)分两种情况讨论,当在的上方或在的下方,分别求解即可.
    【详解】
    解:(1)∵
    ∴∵,
    ∴m-6=0,n-2=0
    ∴m=6,n=2
    ∴B(-6,0),C(2,0)
    (2)∵BD⊥AC,AO⊥BC ∠BDC=∠BDA=90°,∠AOB=∠AOC=90°
    ∴∠OAC+∠OCA=90°,∠OBE+∠OCA=90°
    ∴∠OAC=∠OBE
    ∴△OAC≌△OBE(AAS)
    ∴OC=OE=2


    ①当0≤t<4时,BP=2t,PC=8-2t,S=PC×OE=(8-2t)×2=8-2t;
    ②当t>4时,BP=2t,PC=2t-8,S=PC×OE=(2t-8)×2=2t-8;
    (3)当t=6时,BP=12
    ∴OB=OP=6
    ①当F在EP上方时,作FM⊥y轴于M,FN⊥x轴于N
    ∴∠FME=∠FNP=90°
    ∵∠MFN=∠EFP=90°
    ∴∠MFE=∠NFP∵FE=FP

    ∴ME=NP,FM=FN
    ∴MO=ON
    ∴2+EM=6-NP
    ∴ON=4
    ∴F(4,4)
    ②当F在EP下方时,作FG⊥y轴于G,FH⊥x轴于H
    ∴∠FGE=∠FHP=90°
    ∵∠GFH=∠EFP=90°
    ∴∠GFE=∠HFP
    ∵FE=FP

    ∴FG=FH, GE=HP
    ∴HF=OG,FG=OH
    ∴2+OG=6-OH
    ∴OG=OH=2
    ∴F(2,-2)


    【点睛】
    此题考查了坐标与图形,涉及了全等三角形的判定与性质,平分的性质,等腰三角形的性质,一次函数的性质,解题的关键是掌握并灵活运用相关性质进行求解.
    2、(1);(2)点的坐标;(3)点的坐标为或,或.
    【解析】
    【分析】
    (1)当时,,即点的坐标为,将点的坐标代入直线得:,解得:,即可求解;
    (2)确定点的对称点、点的对称点,连接,此时,的值最小,即可求解;
    (3)①当点在直线上方,画出图形,证明,利用,,即可求解.②当点在直线下方时,同①的方法即可得出结论.③如图2中,当点在轴的右侧,是等腰直角三角形时,同法可得结论.
    【详解】
    解:(1)当时,,即点的坐标为,
    将点的坐标代入直线得:,解得:,
    故:直线的解析式为:;
    (2)确定点关于过点垂线的对称点、点关于轴的对称点,
    连接交过点的垂线与点,交轴于点,此时,的值最小,如图所示:

    将点、点的坐标代入一次函数表达式:得:,解得:,
    则直线的表达式为:,
    当时,,即点的坐标为,
    的值,
    即:当的值最小为时,此时点的坐标;
    (3)将、点坐标代入一次函数表达式,同理可得其表达式为
    ①当点在直线上方时,设点,点,点,
    过点、分别作轴的平行线交过点与轴的平行线分别交于点、,

    ,,

    ,,

    ,,
    即,解得.
    故点的坐标为,
    ②当点在下方时,如图1,过点作轴,与过点作轴的平行线交于,与过点作轴的平行线交于,

    同①的方法得,,
    ③如图2中,当点在轴的右侧,是等腰直角三角形时,同法可得


    即:点的坐标为,或,.
    【点睛】
    本题考查的是一次函数的综合运用,涉及到三角形全等、轴对称的性质等知识点,其中(2)中,通过画图确定点、的位置是本题的难点.
    3、(1)每台A型电脑销售利润为160元,每台B型电脑的销售利润为240元;(2)①y=﹣80x+24000;②商店购进34台A型电脑和66台B型电脑的销售利润最大,最大利润是21280元
    【解析】
    【分析】
    (1)设每台A型电脑销售利润为x元,每台B型电脑的销售利润为y元,然后根据“销售10台A型和20台B型电脑的利润为6400元,销售20台A型和10台B型电脑的利润为5600元”列出方程组,然后求解即可;
    (2)①设购进A型电脑x台,这100台电脑的销售总利润为y元.根据总利润等于两种电脑的利润之和列式整理即可得解;
    ②根据B型电脑的进货量不超过A型电脑的2倍列不等式求出x的取值范围,然后根据一次函数的增减性求出利润的最大值即可.
    【详解】
    解:(1)设每台A型电脑销售利润为x元,每台B型电脑的销售利润为y元,
    根据题意得,,
    解得.
    ∴每台A型电脑销售利润为160元,每台B型电脑的销售利润为240元;
    (2)①设购进A型电脑x台,这100台电脑的销售总利润为y元,
    据题意得,y=160x+240(100﹣x),
    即y=﹣80x+24000,
    ②∵100﹣x≤2x,
    ∴x≥33,
    ∵y=﹣80x+24000,
    ∴y随x的增大而减小,
    ∵x为正整数,
    ∴当x=34时,y取最大值,则100﹣x=66,此时y=-80×34+24000=21280(元),
    即商店购进34台A型电脑和66台B型电脑的销售利润最大,最大利润是21280元.
    【点睛】
    本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,读懂题目信息,准确找出等量关系列出方程组是解题的关键,利用一次函数的增减性求最值是常用的方法,需熟练掌握.
    4、(1)80,100;(2)y2=0.2x;(3)②
    【解析】
    【分析】
    (1)根据题意由函数图象就可以得出①②收费;
    (2)根据题意设②中y与x的关系式为y2=k2x,由待定系数法求出k2值即可;
    (3)根据题意设①中y与x的关系式为y1=k1x+b,再讨论当y1>y2,y1=y2,y1<y2时求出x的取值就可以得出结论.
    【详解】
    解:(1)由函数图象,得:
    ①方式收费80元,②方式收费100元,
    故答案为:80,100;
    (2)设②中y与x的关系式为y2=k2x,由题意,得
    100=500k2,
    ∴k=0.2,
    ∴函数解析式为:y2=0.2x;
    (3)设①中y与x的关系式为y1=k1x+b,由函数图象,得:
    b=30500k1+b=80,
    解得:k1=0.1b=30,
    ∴y1=0.1x+30,
    当y1>y2时,0.1x+30>0.2x,
    解得:x<300,
    当y1=y2时,0.1x+30=0.2x,
    解得:x=300,
    当y1<y2时,0.1x+30<0.2x,
    x>300,
    ∵200<300,
    ∴方式②省钱.
    故答案为:②.
    【点睛】
    本题考查待定系数法求一次函数的解析式的运用,分类讨论思想的运用,设计方案的运用,解答时认真分析函数图象的意义是解题的关键.
    5、(1)N95型和一次性成人口罩每箱进价分别为2250元、500元;(2)最多可购进N95型40箱;(3)采购N95型40个,一次性成人口罩40个可获得最利润为24000元.
    【解析】
    【分析】
    (1)设N95型每箱进价x元,一次性成人口罩每箱进价y元,依题意得10x+20y=32500,30x+40y=87500,联立求解即可;
    (2)设购进N95型a箱,依题意得:2250×(1+10%)a+500×80%×(80-a)≤115000,求出a的范围,结合a为正整数可得a的最大值;
    (3)设购进的口罩获得最大的利润为w,依题意得:w=500a+100(80-a),然后对其进行化简,结合一次函数的性质进行解答.
    【详解】
    (1)解:设N95型每箱进价x元,一次性成人口罩每箱进价y元,依题意得:
    {10x+20y=3250030x+40y=87500 ,解得: {x=2250y=500 ,
    答:N95型和一次性成人口罩每箱进价分别为2250元、500元.
    (2)解:设购进N95型a箱,则一次性成人口罩为(80﹣a)套,依题意得:
    2250(1+10%)a+500×80%(80﹣a)≤115000 .
    解得:a≤40.∵a取正整数,0<a≤40.
    ∴a的最大值为40.
    答:最多可购进N95型40箱.
    (3)解:设购进的口罩获得最大的利润为w,
    则依题意得:w=500a+100(80﹣a)=400a+8000,
    又∵0<a≤40,∴w随a的增大而增大,
    ∴当a=40时,W=400×40+8000=24000元.
    即采购N95型40个,一次性成人口罩40个可获得最利润为24000元.
    答:最大利润为24000元.
    【点睛】
    本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)根据各数量之间的关系,找出w关于a的函数关系式.

    相关试卷

    初中数学北京课改版八年级下册第十四章 一次函数综合与测试综合训练题:

    这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试综合训练题,共26页。试卷主要包含了已知点,若直线y=kx+b经过第一等内容,欢迎下载使用。

    北京课改版八年级下册第十四章 一次函数综合与测试课后练习题:

    这是一份北京课改版八年级下册第十四章 一次函数综合与测试课后练习题,共21页。试卷主要包含了已知点A,已知一次函数y=,点P在第二象限内,P点到x等内容,欢迎下载使用。

    初中数学北京课改版八年级下册第十四章 一次函数综合与测试练习:

    这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试练习,共28页。试卷主要包含了点在第四象限,则点在第几象限,下面哪个点不在函数的图像上.等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map