初中数学北京课改版八年级下册第十四章 一次函数综合与测试课后作业题
展开
这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试课后作业题,共21页。试卷主要包含了一次函数y=mx﹣n等内容,欢迎下载使用。
京改版八年级数学下册第十四章一次函数必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、函数y=中,自变量x的取值范围是( )A.x>﹣3且x≠0 B.x>﹣3 C.x≥﹣3 D.x≠﹣32、已知点A(x+2,x﹣3)在y轴上,则x的值为( )A.﹣2 B.3 C.0 D.﹣33、点A(-3,1)到y轴的距离是( )个单位长度.A.-3 B.1 C.-1 D.34、用m元钱在网上书店恰好可购买100本书,但是每本书需另加邮寄费6角,购买n本书共需费用y元,则可列出关系式( )A.y=n(+0.6) B.y=n()+0.6C.y=n(+0.6) D.y=n()+0.65、如图,在平面直角坐标系中,直线l1:y=x+1与直线l2:y=x交于点A1,过A1作x轴的垂线,垂足为B1,过B1作l2的平行线交l1于A2,过A2作x轴的垂线,垂足为B2,过B2作l2的平行线交l1于A3,过A3作x轴的垂线,垂足为B3…按此规律,则点An的纵坐标为( )A.()n B.()n+1 C.()n﹣1+ D.6、一次函数的自变量的取值增加2,函数值就相应减少4,则k的值为( )A.2 B.-1 C.-2 D.47、关于一次函数y=﹣2x+3,下列结论正确的是( )A.图象与x轴的交点为(,0)B.图象经过一、二、三象限C.y随x的增大而增大D.图象过点(1,﹣1)8、在平面直角坐标系中,把直线沿轴向右平移两个单位长度后.得到直线的函数关系式为( )A. B. C. D.9、一次函数y=mx﹣n(m,n为常数)的图象如图所示,则不等式mx﹣n≥0的解集是( )A.x≥2 B.x≤2 C.x≥3 D.x≤310、点P到x轴的距离是3,到y轴的距离是2,且点P在y轴的左侧,则点P的坐标是( )A.(-2,3)或(-2,-3) B.(-2,3)C.(-3,2)或(-3,-2) D.(-3,2)第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个用电器的电阻是可调节的,其调节范围为:110~220Ω.已知电压为220ᴠ,这个用电器的功率P的范围是:___________ w.(P表示功率,R表示电阻,U表示电压,三者关系式为:P·R=U²)2、华氏温标与摄氏温标是两大国际主流的计量温度的标准.德国的华伦海特用水银代替酒精作为测温物质,他令水的沸点为212度,纯水的冰点为32度,这套记温体系就是华氏温标.瑞典的天文学家安德斯·摄尔修斯将标准大气压下冰水混合物的温度规定为0摄氏度,水的沸点规定为100摄氏度,这套记温体系就是摄氏温标.两套记温体系之间是可以进行相互转化的,部分温度对应表如下:华氏温度(℉)506886104……212摄氏温度(℃)10203040……m(1)m=______;(2)若华氏温度为a,摄氏温度为b,则把摄氏温度转化为华氏温度的公式为_______.3、函数的定义域是_____.4、已知函数,如果函数值,那么相应的自变量的取值范围是_______.5、如图,函数和的图象相交于,则不等式的解集为____.三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,一次函数 图象经过点A(1,4),点B是一次函数的图象与正比例函数 的图象的交点.(1)求k的值和直线与x轴、y轴的交点C、D的坐标;(2)求点B的坐标;(3)求△AOB的面积.2、如图,一次函数的图象与x轴、y轴分别交于点A、B(0,6),与正比例函数的图象交于点C(1,m).(1)求一次函数的解析式;(2)比较和的大小;(3)点N为正比例函数图象上的点(不与C重合),过点N作NE⊥x轴于点E(n,0),交直线于点D,当=AB时,求点N的坐标.3、已知A、B两地之间有一条公路.甲车从A地出发匀速开往B地,甲车出发两小时后,乙车从B地出发匀速开往A地,两车同时到达各自的目的地.两车行驶的路程之和y(千米)与甲车行驶的时间x(小时)之间的函数关系如图所示.(1)甲车的速度为 千米/时,a的值为 .(2)求乙车出发后,y与x之间的函数关系式.4、一次函数的图像过,两点.(1)求函数的关系式;(2)画出该函数的图像;(3)由图像观察:当x 时,y>0;当x 时,y<0;当时,y的取值范围是 .5、如图1,直线的解析式为,点坐标为,点关于直线的对称点点在直线上.(1)求直线的解析式;(2)如图2,在轴上是否存在点,使与的面积相等,若存在求出点坐标,若不存在,请说明理由;(3)如图3,过点的直线.当它与直线夹角等于45°时,求出相应的值. -参考答案-一、单选题1、B【解析】【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不为0列式计算即可.【详解】解:∵函数y=,∴,解得:x>﹣3.故选:B.【点睛】本题考查函数基本知识,解题的关键是掌握二次根式和分式有意义的条件.2、A【解析】【分析】根据y轴上点的横坐标为0列方程求解即可.【详解】解:∵点A(x+2,x﹣3)在y轴上,∴x+2=0,解得x=-2.故选:A.【点睛】本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键.3、D【解析】【分析】由点到轴的距离等于该点坐标横坐标的绝对值,可以得出结果.【详解】解:由题意知到轴的距离为到轴的距离是个单位长度故选D.【点睛】本题考察了点到坐标轴的距离.解题的关键在于明确距离的求解方法.距离为正值是易错点.解题技巧:点到轴的距离=;到轴的距离=.4、A【解析】【分析】由题意可得每本书的价格为元,再根据每本书需另加邮寄费6角即可得出答案;【详解】解:因为用m元钱在网上书店恰好可购买100本书,所以每本书的价格为元,又因为每本书需另加邮寄费6角,所以购买n本书共需费用y=n(+0.6)元;故选:A.【点睛】本题考查了列代数式和用关系式表示变量之间的关系,正确理解题意、得到每本书的价格是关键.5、A【解析】【分析】联立直线l1与直线l2的表达式并解得:x=,y=,故A1(,),依次求出:点A2的纵坐标为、A3的纵坐标为,即可求解.【详解】解:联立直线l1与直线l2的表达式并解得:x=,y=,故A1(,);则点B1(,0),则直线B1A2的表达式为:y=x+b,将点B1坐标代入上式并解得:直线B1A2的表达式为:y3=x﹣,将表达式y3与直线l1的表达式联立并解得:x=,y=,即点A2的纵坐标为;同理可得A3的纵坐标为,…按此规律,则点An的纵坐标为()n,故选:A.【点睛】本题为探究规律类题目,求此类和一次函数的交点有关的规律题,需要将前几个交点一次求出来,然后找到点的横坐标,纵坐标之间的关系,可能出现周期的规律,或者后面的数时前面数的倍数或差相同等的规律.6、C【解析】【分析】首先根据题意表示出x=1时,y=k+3,因为在x=1处,自变量增加2,函数值相应减少4,可得x=3时,函数值是k+3-4,进而得到3k+3=k+3-4,再解方程即可.【详解】解:由题意得:x=1时,y=k+3,∵在x=1处,自变量增加2,函数值相应减少4,∴x=3时,函数值是k+3-4,∴3k+3=k+3-4,解得:k=-2,故选C.【点睛】此题主要考查了求一次函数中的k,关键是弄懂题意,表示出x=1,x=3时的y的值.7、A【解析】【分析】利用一次函数图象上点的坐标特征,可判断出选项A符合题意;利用一次函数图象与系数的关系,可判断出选项B不符合题意;利用一次函数的性质,可判断出选项C不符合题意;利用一次函数图象上点的坐标特征,可判断出选项D不符合题意.【详解】解:A.当y=0时,﹣2x+3=0,解得:x=,∴一次函数y=﹣2x+3的图象与x轴的交点为(,0),选项A符合题意;B.∵k=﹣2<0,b=3>0,∴一次函数y=﹣2x+3的图象经过第一、二、四象限,选项B不符合题意;C.∵k=﹣2<0,∴y随x的增大而减小,选项C不符合题意;D.当x=1时,y=﹣2×1+3=1,∴一次函数y=﹣2x+3的图象过点(1,1),选项D不符合题意.故选:A.【点睛】本题主要是考查了一次函数图象上点的坐标特征、一次函数的性质,熟练掌握利用函数表达式求解点的坐标,利用一次函数的性质,求解增减性和函数所过象限,是解决本题的关键.8、D【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答.【详解】解:把直线沿x轴向右平移2个单位长度,可得到的图象的函数解析式是:y=-2(x-2)+3=-2x+7.故选:D.【点睛】本题考查了一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.9、D【解析】【分析】观察直线位于x轴及x轴上方的图象所对应的自变量的值即可完成解答.【详解】由图象知:不等式的解集为x≤3故选:D【点睛】本题考查了一次函数与一元一次不等式的关系,数形结合是解答本题的关键.10、A【解析】【分析】根据点P到坐标轴的距离以及点P在平面直角坐标系中的位置求解即可.【详解】解:∵点P在y轴左侧,∴点P在第二象限或第三象限,∵点P到x轴的距离是3,到y轴距离是2,∴点P的坐标是(-2,3)或(-2,-3),故选:A.【点睛】此题考查了平面直角坐标系中点的坐标表示,点到坐标轴的距离,解题的关键是熟练掌握平面直角坐标系中点的坐标表示,点到坐标轴的距离.二、填空题1、220≤P≤440【解析】【分析】由题意根据题目所给的公式分析可知,电阻越大则功率越小,当电阻为110Ω时,功率最大,当电阻为220Ω时,功率最小,从而求出功率P的取值范围.【详解】解:三者关系式为:P·R=U²,可得,把电阻的最小值R=110代入得,得到输出功率的最大值,把电阻的最大值R=220代入得,得到输处功率的最小值,即用电器输出功率P的取值范围是220≤P≤440.故答案为:220≤P≤440.【点睛】本题考查一元一次不等式组与函数的应用,解答本题的关键是读懂题意,弄清楚公式的含义,代入数据,求出功率P的范围.2、 100 a=32+1.8b【解析】【分析】(1)由表格数据可知华氏温度与摄氏温度满足一次函数关系,利用待定系数法解题;(2)由表格数据规律,得到华氏温度=摄氏温度+32,据此解题.【详解】解:(1)设华氏温度与摄氏温度满足的一次函数关系为:代入(10,50)(20,68)得当时,故答案为:100;(2)由(1)得,华氏温度=摄氏温度+32,若华氏温度为a,摄氏温度为b,则把摄氏温度转化为华氏温度的公式为:a= +32,故答案为:a=32+1.8b.【点睛】本题考查华氏温度与摄氏温度的换算,是基础考点,掌握相关知识是解题关键.3、【解析】【分析】函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数.【详解】解:根据题意得:3x+6≥0,解得x≥﹣2.故答案为:x≥﹣2.【点睛】本题主要考查自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.4、x>4【解析】【分析】根据题意,先求出当时,自变量的值,然后根据一次函数的增减性求解即可.【详解】解:当时,,解得,∵一次函数解析式为,,∴y随x增大而增大,∴当时,,故答案为:.【点睛】本题考查了一次函数的增减性和求自变量的值,熟知一次函数增减性是解题的关键.5、【解析】【分析】观察函数图象得到,当时,直线都在直线的下方,于是可得到不等式的解集.【详解】解:由图象可知,在点A左侧,直线的函数图像都在直线的函数图像得到下方,即当时,.∴不等式的解集为,故答案为:.【点睛】本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.三、解答题1、(1)C(5, 0 ), D(O,5 );(2)B点坐标是(3,2);(3)5【解析】【分析】(1)直接把A点坐标代入y=kx+5可求出k的值,再求直线与x轴、y轴的交点C、D的坐标即可;(2)根据两直线相交的问题,通过解方程组可得到B点坐标;(3)先求出直线AB与x轴的交点C的坐标,然后利用S△AOB=S△AOC-S△BOC进行计算.【详解】解:(1)把A(1,4)代入y=kx+5得k+5=4,解得k=-1;则一次函数解析式为y=-x+5,令x=0,则y=5;令y=0,则x=5;∴点C的坐标为(5,0),点D的坐标为(0,5);(2)解方程组,得,所以点B坐标为(3,2);(3)∵点C的坐标为(5,0),点A的坐标为(1,4),点B坐标为(3,2),∴S△AOB=S△AOC-S△BOC=×5×4-×5×2=5.【点睛】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.2、(1);(2)见解析;(3)点N的坐标为(,)或(,)【解析】【分析】根据点C在上,可得m=3,从而得到点C坐标为(1,3),再将将B(0,6)和点C(1,3)代入中,即可求解;(2)可先求出点A坐标为(2,0),再分别求和的大小,即可求解;(3)根据题意可得:点N的坐标为(n,3n),点D的坐标为(n,-3n+6),从而得到,再由=AB,可得,解出即可.【详解】解:(1)∵点C在上,∴m=3×1=3,即点C坐标为(1,3),将B(0,6)和点C(1,3)代入中,得:,解得:∴一次函数解析式为; (2)由(1)知一次函数解析式为,当 时, ,∴点A坐标为(2,0),∵B(0,6)和点C(1,3),∴,,∴; (3)由题意知,点N的坐标为(n,3n),点D的坐标为(n,-3n+6)∴,∵在Rt△AOB中,∴当时,有即,或,解得:或,∴点N的坐标为(,)或(,).【点睛】本题主要考查了一次函数的图象和性质,交点问题,熟练掌握一次函数的图象和性质利用数形结合思想解答是解题的关键.3、(1)40;480;(2)y=100x-120【解析】【分析】(1)根据图象可知甲车行驶2行驶所走路程为80千米,据此即可求出甲车的速度;进而求出甲车行驶6小时所走的路程为240千米,根据两车同时到达各自的目的地可得a=240×2=480;(2)运用待定系数法解得即可;【详解】解:(1)由题意可知,甲车的速度为:80÷2=40(千米/时);a=40×6×2=480,故答案为:40;480;(2)设y与x之间的函数关系式为y=kx+b,由图可知,函数图象经过(2,80),(6,480),∴,解得,∴y与x之间的函数关系式为y=100x-120;【点睛】本题考查了从函数图象获取信息,以及待定系数法求一次函数解析式,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.4、(1);(2)见解析;(3);;【解析】【分析】(1)运用待定系数法求出函数关系式即可;(2)根据“两点确定一条直线”画出直线即可;(3)根据函数图象解答即可.【详解】解:(1)设经过A,B两点的直线解析式为y=kx+b,把,两点坐标代入,得 解得, ∴直线的解析式为;(2)当x=0时,y=4,当y=0时,x=2,∴直线经过(0,4),(2,0),画图象如图所示,(3)根据图象可得:当时,;当时,;当时, 故答案为:;;【点睛】本题主要考查了运用待定系数法求一次函数解析式,画一次函数图象以及一次函数图象与性质,熟练掌握一次函数的图象与性质是解答本题的关键.5、故答案为:b;(a-2b)2;b(a-2b)(2)解:当b=3cm, a-2b=20-6=14cm,b(a-2b)2=3×142=588cm3,当b=4,a-2b=20,8=12cm,b(a-2b)2=4×122=576cm3,故答案为:588;576.(3)解:随着减去的小正方形的边长的增大,所折无盖长方体盒子的容积先变大,再变小.故选择C.(4)根据无盖长方体盒子的容积的变化,截去的正方形边长在3cm时,无盖长方体盒子的容积
相关试卷
这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试课时作业,共24页。试卷主要包含了变量,有如下关系,在下列说法中,能确定位置的是等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十四章 一次函数综合与测试复习练习题,共24页。试卷主要包含了已知点A,已知点等内容,欢迎下载使用。
这是一份初中第十四章 一次函数综合与测试测试题,共24页。试卷主要包含了如图,过点A等内容,欢迎下载使用。