搜索
    上传资料 赚现金
    英语朗读宝

    精品试卷京改版八年级数学下册第十四章一次函数专项测试练习题(含详解)

    精品试卷京改版八年级数学下册第十四章一次函数专项测试练习题(含详解)第1页
    精品试卷京改版八年级数学下册第十四章一次函数专项测试练习题(含详解)第2页
    精品试卷京改版八年级数学下册第十四章一次函数专项测试练习题(含详解)第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北京课改版八年级下册第十四章 一次函数综合与测试课时作业

    展开

    这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试课时作业,共24页。试卷主要包含了变量,有如下关系,在下列说法中,能确定位置的是等内容,欢迎下载使用。
    京改版八年级数学下册第十四章一次函数专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。I卷(选择题  30分)一、单选题(10小题,每小题3分,共计30分)1、下列各图中,不能表示yx的函数的是(            A. B.C. D.2、用m元钱在网上书店恰好可购买100本书,但是每本书需另加邮寄费6角,购买n本书共需费用y元,则可列出关系式(       A.y=n(+0.6) B.y=n()+0.6C.y=n(+0.6) D.y=n()+0.63、如图,一次函数ykx+bk≠0)的图像经过点A(﹣1,﹣2)和点B(﹣2,0),一次函数y=2x的图像过点A,则不等式2xkx+b≤0的解集为(       A.x≤﹣2 B.﹣2≤x<﹣1 C.﹣2<x≤﹣1 D.﹣1<x≤04、如图,已知直线ykx+bymx+n交于点A(﹣2,3),与x轴分别交于点B(﹣1,0)、C(3,0),则方程组的解为(       A. B. C. D.无法确定5、如图,在平面直角坐标系中,长方形的顶点的坐标分别为,点的中点,点上运动,当时,点的坐标是(       )A. B. C. D.6、正比例函数y=mx的图象经过点(-1,2),那么这个函数的解析式为(     A.y=x B.y=x C.y=2x D.y=-2x7、变量有如下关系:①;②;③;④.其中的函数的是(       A.①②③④ B.①②③ C.①② D.①8、点Px轴的距离是3,到y轴的距离是2,且点Py轴的左侧,则点P的坐标是(  )A.(-2,3)或(-2,-3) B.(-2,3)C.(-3,2)或(-3,-2) D.(-3,2)9、在下列说法中,能确定位置的是(     A.禅城区季华五路 B.中山公园与火车站之间C.距离祖庙300米 D.金马影剧院大厅5排21号10、正比例函数的函数值的增大而减小,则一次函数的图象大致是(       A. B. C. D.第Ⅱ卷(非选择题  70分)二、填空题(5小题,每小题4分,共计20分)1、已知y成正比例,且当时,,则yx之间的函数关系式为______________.2、如图所示,公园的位置是_______,车站的位置是_______,学校的位置是_______.3、如图,已知直线与直线相交于点,则关于x的不等式的解集为 _____4、将一次函数的图像沿x轴向左平移4个单位长度,所得到的图像对应的函数表达式是______.5、图象经过点A(-2,6)的正比例函数y=kx,则k为 _________ .三、解答题(5小题,每小题10分,共计50分)1、综合与实践:制作一个无盖长方形盒子.用一张正方形的纸片制成一个如图的无盖长方体纸盒.如果我们按照如图所示的方式,将正方形的四个角减掉四个大小相同的小正方形,然后沿虚线折起来,就可以做成一个无盖的长方体盒子.(1)如果原正方形纸片的边长为a cm,剪去的正方形的边长为b cm,则折成的无盖长方体盒子的高为________cm,底面积为_______cm2,请你用含a,b的代数式来表示这个无盖长方体纸盒的容积__________cm3(2)如果a=20cm,剪去的小正方形的边长按整数值依次变化,即分别取1cm,2cm,3cm,4cm,5cm,6cm,7cm,8cm,9cm,10cm时,折成的无盖长方体的容积分别是多少?请你将计算的结果填入下表;剪去正方形的边长/cm12345678910容积/cm3324512__________500384252128360(3)观察绘制的统计表,你发现,随着减去的小正方形的边长的增大,所折无盖长方体盒子的容积如何变化?(        A.一直增大                  B.一直减小C.先增大后减小               D.先减小后增大(4)分析猜想当剪去图形的边长为__________时,所得的无盖长方体的容积最大,此时无盖长方体的容积是____________cm3(5)对(2)中的结果,你觉得表格中的数据还有什么要改进的地方吗?2、实际情境:甲、乙两人从相距4千米的两地同时、同向出发,甲每小时走6千米,乙每小时走4千米,小狗随甲一起出发,每小时跑12千米,小狗遇到乙的时候它就往甲这边跑,遇到甲时又往乙这边跑,遇到乙的时候再往甲这边跑…就这样一直跑下去.数学研究:如图,折线分别表示甲、小狗在行进过程中,离乙的路程y(km)与甲行进时间x(h)之间的部分函数图像.(1)求线段AB对应的函数表达式;(2)求点E的坐标;(3)小狗从出发到它折返后第一次与甲相遇的过程中,直接写出x为何值时,它离乙的路程与它离甲的路程相等?3、某商店销售10台A型和20台B型电脑的利润为6400元,销售20台A型和10台B型电脑的利润为5600元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍.设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大销售总利润是多少元?4、如图所示,直线ABx轴于点Aa,0),交y轴于点B(0,b),且ab满足C的坐标为(﹣1,0),且AHBC于点HAHOB于点P(1)如图1,写出ab的值,证明△AOP≌△BOC(2)如图2,连接OH,求证:∠OHP=45°;(3)如图3,若点DAB的中点,点My轴正半轴上一动点,连接MD,过DDNDMx轴于N点,当M点在y轴正半轴上运动的过程中,求证:SBDMSADN=4.5、如图,在平面直角坐标系中,直线x轴,y轴分别交于AB两点,直线与直线相交于点(1)求mn的值;(2)直线x轴交于点D,动点P从点D开始沿线段以每秒1个单位的速度向A点运动,设点P的运动时间为t秒.若的面积为12,求t的值. -参考答案-一、单选题1、D【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,即可求解.【详解】解:A、对每一个x的值,都有唯一确定的y值与之对应,能表示yx的函数,故本选项符合题意;B、对每一个x的值,都有唯一确定的y值与之对应,能表示yx的函数,故本选项符合题意;C、对每一个x的值,都有唯一确定的y值与之对应,能表示yx的函数,故本选项符合题意;D、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故本选项不符合题意;故选:D【点睛】本题主要考查了函数的定义,熟练掌握在一个变化过程中,有两个变量xy,对于x的每一个取值,y都有唯一确定的值与之对应,则yx的函数,x叫自变量是解题的关键.2、A【解析】【分析】由题意可得每本书的价格为元,再根据每本书需另加邮寄费6角即可得出答案;【详解】解:因为用m元钱在网上书店恰好可购买100本书,所以每本书的价格为元,又因为每本书需另加邮寄费6角,所以购买n本书共需费用y=n(+0.6)元;故选:A.【点睛】本题考查了列代数式和用关系式表示变量之间的关系,正确理解题意、得到每本书的价格是关键.3、B【解析】【分析】根据图象知正比例函数y=2x和一次函数y=kx+b的图象的交点,即可得出不等式2xkx+b的解集,根据一次函数y=kx+b的图象与x轴的交点坐标即可得出不等式kx+b≤0的解集是x≥-2,即可得出答案.【详解】解:∵由图象可知:正比例函数y=2x和一次函数y=kx+b的图象的交点是A(-1,-2),∴不等式2xkx+b的解集是x<-1,∵一次函数y=kx+b的图象与x轴的交点坐标是B(-2,0),∴不等式kx+b≤0的解集是x≥-2,∴不等式2xkx+b≤0的解集是-2≤x<-1,故选:B【点睛】本题考查一次函数和一元一次不等式的应用,能利用数形结合,找到不等式与一次函数图像的关系是解答此题的关键.4、A【解析】【分析】根据二元一次方程组的解的定义知,该方程组的解就是组成方程组的两个二元一次方程的图象的交点.【详解】解:由图象及题意得:∵直线ykx+bymx+n交于点A(﹣2,3),∴方程组的解为故选:A.【点睛】本题主要考查一次函数与二元一次方程组的解,熟练掌握一次函数的图象与性质是解题的关键.5、A【解析】【分析】由点的中点,可得出点D的坐标,当,由等腰三角形的性质即可得出点P的坐标【详解】解:过点PPMOD于点M ∵长方形的顶点的坐标分别为,点的中点,∴点D(5,0)PMODOMDM即点M(2.5,0)∴点P(2.5,4),故选:A【点睛】此题主要考查了坐标与图形的性质和等腰三角形的性质,熟练掌握等腰三角形“三线合一”的性质是解题的关键.6、D【解析】【分析】把点(-1,2)代入正比例函数y=mx即可求解.【详解】解:∵正比例函数y=mx的图象经过点(-1,2),∴-m=2,m=-2,∴这个函数解析式为y=-2x故选:D【点睛】本题考查了待定系数法求正比例函数解析式,理解待定系数法,把点的坐标代入函数解析式是解题关键.7、B【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数即可.【详解】解:①满足对于x的每一个取值,y都有唯一确定的值与之对应,则yx的函数;满足对于x的每一个取值,y都有唯一确定的值与之对应,则yx的函数;满足对于x的每一个取值,y都有唯一确定的值与之对应,则yx的函数;,当时,,则y不是x的函数;综上,函数的有①②③.故选:B.【点睛】本题主要考查了函数的定义.在一个变化过程中,有两个变量xy,对于x的每一个取值,y都有唯一确定的值与之对应,则yx的函数.8、A【解析】【分析】根据点P到坐标轴的距离以及点P在平面直角坐标系中的位置求解即可.【详解】解:∵点Py轴左侧,∴点P在第二象限或第三象限,∵点Px轴的距离是3,到y轴距离是2,∴点P的坐标是(-2,3)或(-2,-3),故选:A.【点睛】此题考查了平面直角坐标系中点的坐标表示,点到坐标轴的距离,解题的关键是熟练掌握平面直角坐标系中点的坐标表示,点到坐标轴的距离.9、D【解析】【分析】根据确定位置的方法逐一判处即可.【详解】解:A、禅城区季华五路,确定了路线,没能确定准确位置,故不符合题意;B、中山公园与火车站之间,没能确定准确位置,故不符合题意;C、距离祖庙300米,有距离但没有方向,故不符合题意;D、金马影剧院大厅5排21号,确定了位置,故符合题意.故选:D【点睛】本题考查了位置的确定,熟练掌握常见的确定位置的方法:①用有序数对确定物体位置;②用方向和距离来确定物体的位置.10、C【解析】【分析】因为正比例函数的函数值的增大而减小,可以判断;再根据判断出的图象的大致位置.【详解】解:正比例函数的函数值的增大而减小,一次函数的图象经过一、三、四象限.故选C.【点睛】主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数的图象有四种情况:①当时,函数的图象经过第一、二、三象限;②当时,函数的图象经过第一、三、四象限;③当时,函数的图象经过第一、二、四象限;④当时,函数的图象经过第二、三、四象限.二、填空题1、##【解析】【分析】根据题意,可设 ,将时,,代入即可求解.【详解】解:根据题意,可设∵当时, ,解得:yx之间的函数关系式为故答案为:【点睛】本题主要考查了用待定系数法求函数解析式,正比函数的定义,根据题意 是解题的关键.2、     (4,4);     (-2,-3);     (4,-2)【解析】【分析】用点坐标表示位置.【详解】①在直角坐标系中查横坐标为,纵坐标为;得到公园的位置为故答案为:②在直角坐标系中查横坐标为,纵坐标为;得到车站的位置为故答案为:③在直角坐标系中查横坐标为,纵坐标为;得到学校的位置为故答案为:【点睛】本题考察了坐标系中点的坐标.解题的关键在于正确的找出横、纵坐标的值.3、【解析】【分析】观察函数图象可得当时,直线直线直线的下方,于是得到不等式的解集.【详解】解:根据图象可知,不等式的解集为故答案为:【点睛】本题考查了一次函数的交点问题及不等式,解题的关键是掌握数形结合的解题方法.4、##y=4+2x【解析】【分析】根据一次函数的平移规律:“上加下减,左加右减”来解题即可.【详解】由一次函数的图象沿x轴向左平移4个单位后,得到的图象对应的函数关系式为化简得:故答案为:【点睛】此题主要考查了一次函数图象与几何变换,求直线平移后的解析式时要注意一次函数的平移规律:“上加下减,左加右减”.5、-3【解析】【分析】把点A(-2,6)代入正比例函数的关系式为y=kx,即可求出答案.【详解】解:将点A(-2,6)代入正比例函数的关系式为y=kx则有6=-2k解得:k=-3,故答案为:-3.【点睛】本题考查了正比例函数的解析式的问题,做题的关键是直接将点的坐标代入解析式,计算即可.三、解答题1、 (1)b;(a-2b)2b(a-2b)2(2)588;576(3)C(4)3;588(5)表格中正方形的边长数据可以再精确一些,可以精确到小数点后一位或两位【解析】【分析】(1)根据截去的小正方形边长,得出无盖长方体盒子的高为bcm,然后求出底面边长,再求底面积,和体积即可;(2)根据截去的边长,求出底面边长,再求出无盖的长方体盒子的体积即可;(3)根据表格的信息可得随着减去的小正方形的边长的增大,得出无盖长方体盒子的容积变化规律;(4)根据表格得出截去小正方形边长为整数3时,体积最大,计算即可;(5)根据精确度要求越高,无盖长方体盒子的容积会更大些.(1)解:无盖长方体盒子的高就是截去的小正方形边长,无盖长方体盒子的高为bcm,底面边长(a-2b)cm,底面面积为(a-2b2cm2, 做成一个无盖的长方体盒子的体积为ba-2b2cm32、(1);(2);(3)【解析】【分析】(1)利用待定系数法求线段AB对应的函数表达式即可;(2)设DE对应的函数表达式为,根据k的几何意义可,将点D坐标代入求得b',再与线段AB解析式联立方程组求出交点E坐标即可;(3)利用待定系数法求线段AD对应的函数解析式,分y1=2y3y1=2y2求解x值即可.【详解】解:(1)设线段AB对应的函数表达式为由图像得,当时,,当时,,代入得:解得:∴线段AB对应的函数表达式为(0≤x≤2);(2)设线段DE对应的函数表达式为由题意得,代入,得∴线段DE对应的函数表达式为∵点E是线段AB和线段DE的交点,故E满足:,解得:(3)设线段AD对应的函数表达式为A(0,4)、代入,得:解得:∴设AD对应的函数表达式为,由题意,分两种情况:y=2y3时,由-2x+4=2(-8x+4)得:y=2y2时,由-2x+4=2(16x-8)得:故当时,它离乙的路程与它离甲的路程相等.【点睛】本题考查一次函数的应用、待定系数法求一次函数表达式,理解题意,理清图象中各点、各线段之间的关系是解答的关键.3、(1)每台A型电脑销售利润为160元,每台B型电脑的销售利润为240元;(2)①y=﹣80x+24000;②商店购进34台A型电脑和66台B型电脑的销售利润最大,最大利润是21280元【解析】【分析】(1)设每台A型电脑销售利润为x元,每台B型电脑的销售利润为y元,然后根据“销售10台A型和20台B型电脑的利润为6400元,销售20台A型和10台B型电脑的利润为5600元”列出方程组,然后求解即可;(2)①设购进A型电脑x台,这100台电脑的销售总利润为y元.根据总利润等于两种电脑的利润之和列式整理即可得解;②根据B型电脑的进货量不超过A型电脑的2倍列不等式求出x的取值范围,然后根据一次函数的增减性求出利润的最大值即可.【详解】解:(1)设每台A型电脑销售利润为x元,每台B型电脑的销售利润为y元,根据题意得,解得∴每台A型电脑销售利润为160元,每台B型电脑的销售利润为240元;(2)①设购进A型电脑x台,这100台电脑的销售总利润为y元,据题意得,y=160x+240(100﹣x),y=﹣80x+24000,②∵100﹣x≤2xx≥33y=﹣80x+24000,yx的增大而减小,x为正整数,∴当x=34时,y取最大值,则100﹣x=66,此时y=-80×34+24000=21280(元),即商店购进34台A型电脑和66台B型电脑的销售利润最大,最大利润是21280元.【点睛】本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,读懂题目信息,准确找出等量关系列出方程组是解题的关键,利用一次函数的增减性求最值是常用的方法,需熟练掌握.4、(1)a=4,b=﹣4,见解析;(2)见解析;(3)见解析【解析】【分析】1)先依据非负数的性质求得的值从而可得到,然后再,最后,依据可证明2)要证,只需证明平分,过分别作点,作点,只需证到,只需证明即可;3)连接,易证,从而有,由此可得【详解】1)解:中,2)证明:过分别作点,作点.在四边形中,中,平分3)证明:如图:连接的中点,中,【点睛】本题是一次函数综合题,考查了全等三角形的判定与性质、等腰直角三角形的性质、角平分线的判定、二次根式及完全平方式的非负性等知识,在解决第(3)小题的过程中还用到了等积变换,而运用全等三角形的性质则是解决本题的关键.5、(1);(2)【解析】【分析】(1)将点代入直线确定m,再将点C代入即可确定n的值;(2)利用函数解析式可得:,结合图形可得,三角形的高为点C的纵坐标,代入三角形面积公式求解即可得.【详解】解:(1)∵点在直线上,在直线上,(2)由题意得:对于直线,令,得对于直线,令,得t的值为6.【点睛】题目主要考查利用待定系数法确定一次函数解析式,与坐标轴围成的面积等,理解题意,熟练运用一次函数的性质是解题关键. 

    相关试卷

    初中北京课改版第十四章 一次函数综合与测试同步练习题:

    这是一份初中北京课改版第十四章 一次函数综合与测试同步练习题,共25页。试卷主要包含了如图,一次函数y=kx+b,已知一次函数y=等内容,欢迎下载使用。

    北京课改版八年级下册第十四章 一次函数综合与测试复习练习题:

    这是一份北京课改版八年级下册第十四章 一次函数综合与测试复习练习题,共24页。试卷主要包含了已知点A,已知点等内容,欢迎下载使用。

    初中数学北京课改版八年级下册第十四章 一次函数综合与测试测试题:

    这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试测试题,共20页。试卷主要包含了若一次函数y=kx+b,已知点A,点P的坐标为等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map