初中数学北京课改版八年级下册第十四章 一次函数综合与测试当堂达标检测题
展开
这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试当堂达标检测题,共25页。试卷主要包含了已知函数和 的图象交于点P,点在第四象限,则点在第几象限等内容,欢迎下载使用。
京改版八年级数学下册第十四章一次函数达标测试
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,每个小正方形的边长为1,在阴影区域的点是( )
A.(1,2) B.(﹣1,﹣2) C.(﹣1,2) D.(1,﹣2)
2、甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,到达目的地后停止. 甲、乙两人之间的距离y(m)与甲所用时间x(min)之间的函数关系如图所示,给出下列结论:①A,B之间的距离为1200m;②乙行走的速度是甲的1.5倍;③b=800;④a=34,其中正确的结论个数为( )
A.4个 B.3个 C.2个 D.1个
3、正比例函数y=mx的图象经过点(-1,2),那么这个函数的解析式为( )
A.y=x B.y=x C.y=2x D.y=-2x
4、点P到x轴的距离是3,到y轴的距离是2,且点P在y轴的左侧,则点P的坐标是( )
A.(-2,3)或(-2,-3) B.(-2,3)
C.(-3,2)或(-3,-2) D.(-3,2)
5、下列关于变量x,y的关系,其中y不是x的函数的是( )
A. B.
C. D.
6、已知一次函数y=kx+b的图象经过点A(2,0),且当x<2时,y>0,则该函数图象所经过的象限为( )
A.一、二、三 B.二、三、四 C.一、三、四 D.一、二、四
7、已知函数和 的图象交于点P(-2,-1),则关于x,y的二元一次方程组的解是( )
A. B. C. D.
8、下列各图中,不能表示y是x的函数的是( )
A. B.
C. D.
9、点在第四象限,则点在第几象限( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
10、如图,直线与分别交轴于点,,则不等式的解集为( ).
A. B. C. D.或
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、点在直角坐标系的轴上,等于 ____.
2、一次函数y=(m-1)x+2的函数值y随x的增大而增大,则m的取值范围是_____.
3、一次函数y1=ax+b与y2=mx+n的部分自变量和对应函数值如下表:
x
…
0
1
2
3
…
y1
…
2
1
…
x
…
0
1
2
3
…
y2
…
﹣3
﹣1
1
3
…
则关于x的方程ax﹣mx=n﹣b的解是_________.
4、如图,已知A(6,0)、B(﹣3,1),点P在y轴上,当y轴平分∠APB时,点P的坐标为_________.
5、将函数的图像向下平移2个单位长度,则平移后的图像对应的函数表达式是______.
三、解答题(5小题,每小题10分,共计50分)
1、【直观想象】
如图1,动点P在数轴上从负半轴向正半轴运动,点P到原点的距离先变小再变大,当点P的位置确定时,点P到原点的距离也唯一确定;
【数学发现】
当一个动点到一个定点的距离为d,我们发现d是x的函数;
【数学理解】
动点到定点的距离为d,当 时,d取最小值;
【类比迁移】
设动点到两个定点、的距离和为y.
①尝试写出y关于x的函数关系式及相对应的x的取值范围;
②在给出的平面直角坐标系中画出y关于x的函数图像;
③当y>9时,x的取值范围是 .
2、我国传统的计重工具﹣﹣秤的应用,方便了人们的生活,如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x(厘米)时,秤钩所挂物重为y(斤).如表中为若干次称重时所记录的一些数据.
x(厘米)
1
2
4
8
y(斤)
0.75
1.00
1.50
2.5
(1)在图2中将表x,y的数据通过描点的方法表示,观察判断x,y的函数关系,并求秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少斤?
(2)已知秤砣到秤纽的最大水平距离为50厘米,这杆秤的可称物重范围是多少斤?
3、如图,一次函数的图象与x轴、y轴分别交于点A、B(0,6),与正比例函数的图象交于点C(1,m).
(1)求一次函数的解析式;
(2)比较和的大小;
(3)点N为正比例函数图象上的点(不与C重合),过点N作NE⊥x轴于点E(n,0),交直线于点D,当=AB时,求点N的坐标.
4、如图,长方形AOBC在直角坐标系中,点A在y轴上,点B在x轴上,已知点C的坐标是(8,4).
(1)求对角线AB所在直线的函数关系式;
(2)对角线AB的垂直平分线MN交x轴于点M,连接AM,求线段AM的长;
(3)若点P是直线AB上的一个动点,当△PAM的面积与长方形OACB的面积相等时,求点P的坐标.
5、为了抗击新冠疫情,全国人民众志成城,守望相助.某地一水果购销商安排15辆汽车装运,,这3种水果共120吨进行销售,所得利润全部捐给国家抗疫.已知15辆汽车都要装满,且每辆汽车只能装同一种水果,每种水果所用车辆均不少于3辆.汽车对不同水果的运载量和销售每吨水果获利情况如下表所示:
水果品种
汽车运载量(吨/辆)
10
8
6
水果获利(元/吨)
800
1200
1000
(1)设装运种水果的车辆数为辆,装运种水果的车辆数为辆
①求与之间的函数关系式;
②设计车辆的安排方案,并写出每种安排方案.
(2)若原有获利不变的情况下,当地政府按每吨60元的标准实行运费补贴.该经销商打算将获利连同补贴全部捐出.问:哪种车辆安排方案可以使这次捐款数(元)最多?捐款数最多是多少?
-参考答案-
一、单选题
1、C
【解析】
【分析】
根据平面直角坐标系中点的坐标的表示方法求解即可.
【详解】
解:图中阴影区域是在第二象限,
A.(1,2)位于第一象限,故不在阴影区域内,不符合题意;
B.(-1,-2)位于第三象限,故不在阴影区域内,不符合题意;
C.(﹣1,2)位于第二象限,其横纵坐标的绝对值不超过3,故在阴影区域内,符合题意;
D. (1,-2)位于第四象限,故不在阴影区域内,不符合题意.
故选:C.
【点睛】
此题考查了平面直角坐标系中四个象限中点的坐标特点,解题的关键是熟练掌握平面直角坐标系中四个象限中点的坐标特点:第一象限横坐标为正,纵坐标为正;第二象限横坐标为负,纵坐标为正;第三象限横坐标为负,纵坐标为负;第四象限横坐标为正,纵坐标为负.
2、A
【解析】
【分析】
由图象所给信息对结论判断即可.
【详解】
由图象可知当x=0时,甲、乙两人在A、B两地还未出发
故A,B之间的距离为1200m
故①正确
前12min为甲、乙的速度和行走了1200m
故
由图象可知乙用了24-4=20min走完了1200m
则
则
故②正确
又∵两人相遇时停留了4min
∴两人相遇后从16min开始继续行走,由图象x=24时的拐点可知,到24min乙到达目的地
则两人相遇后行走了24-16=8min,两人之间的距离为8×100=800米
则b=800
故③正确
从24min开始为甲独自行走1200-800=400m
则t=min
故a=24+10=34
故④正确
综上所述①②③④均正确,共有四个结论正确.
故选:A.
【点睛】
本题考查了从函数图象获取信息,运用数形结合的思想是解题的关键.
3、D
【解析】
【分析】
把点(-1,2)代入正比例函数y=mx即可求解.
【详解】
解:∵正比例函数y=mx的图象经过点(-1,2),
∴-m=2,
∴m=-2,
∴这个函数解析式为y=-2x.
故选:D
【点睛】
本题考查了待定系数法求正比例函数解析式,理解待定系数法,把点的坐标代入函数解析式是解题关键.
4、A
【解析】
【分析】
根据点P到坐标轴的距离以及点P在平面直角坐标系中的位置求解即可.
【详解】
解:∵点P在y轴左侧,
∴点P在第二象限或第三象限,
∵点P到x轴的距离是3,到y轴距离是2,
∴点P的坐标是(-2,3)或(-2,-3),
故选:A.
【点睛】
此题考查了平面直角坐标系中点的坐标表示,点到坐标轴的距离,解题的关键是熟练掌握平面直角坐标系中点的坐标表示,点到坐标轴的距离.
5、D
【解析】
【详解】
解:A、对于的每一个确定的值,都有唯一确定的值与其对应,所以是的函数,此项不符题意;
B、对于的每一个确定的值,都有唯一确定的值与其对应,所以是的函数,此项不符题意;
C、对于的每一个确定的值,都有唯一确定的值与其对应,所以是的函数,此项不符题意;
D、当时,有两个的值与其对应,所以不是的函数,此项符合题意;
故选:D.
【点睛】
本题考查了函数,熟记函数的定义(一般地,在一个变化过程中,如果有两个变量与,并且对于的每一个确定的值,都有唯一确定的值与其对应,那么我们就说是自变量,是的函数)是解题关键.
6、D
【解析】
【分析】
根据题意画出函数大致图象,根据图象即可得出结论.
【详解】
解:如图,
∵一次函数y=kx+b的图象经过点A(2,0),且当x<2时,y>0,
∴该函数图象所经过一、二、四象限,
故选:D.
【点睛】
本题考查了一次函数图象上点的坐标特征,一次函数的性质,数形结合是解题的关键.
7、B
【解析】
【分析】
由两个函数的交点坐标同时满足两个函数解析式,从而可得方程组的解.
【详解】
解:∵函数y=ax-3和y=kx的图象交于点P的坐标为(-2,﹣1),
∴关于x,y的二元一次方程组的解是.
故选B.
【点睛】
本题考查的是利用函数的交点坐标确定方程组的解,明确交点坐标的含义与掌握数形结合的方法解题是关键.
8、D
【解析】
【分析】
根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,即可求解.
【详解】
解:A、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;
B、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;
C、对每一个x的值,都有唯一确定的y值与之对应,能表示y是x的函数,故本选项符合题意;
D、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故本选项不符合题意;
故选:D
【点睛】
本题主要考查了函数的定义,熟练掌握在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量是解题的关键.
9、C
【解析】
【分析】
根据点A(x,y)在第四象限,判断x,y的范围,即可求出B点所在象限.
【详解】
∵点A(x,y)在第四象限,
∴x>0,y<0,
∴﹣x<0,y﹣2<0,
故点B(﹣x,y﹣2)在第三象限.
故选:C.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
10、C
【解析】
【分析】
观察图象,可知当x<0.5时,y=kx+b>0,y=mx+n<0;当0.5<x<2时,y=kx+b<0,y=mx+n<0;当x>2时,y=kx+b<0,y=mx+n>0,二者相乘为正的范围是本题的解集.
【详解】
解:由图象可得,
当x>2时,(kx+b)<0,(mx+n)>0,则(kx+b)(mx+n)<0,故A错误;
当0<x<2时,kx+b<0,mx+n<0,(kx+b)(mx+n)>0,但是没有包含所有使得(kx+b)(mx+n)>0的解集,故B错误;
当时,kx+b<0,mx+n<0,故(kx+b)(mx+n)>0,且除此范围之外都不能使得(kx+b)(mx+n)>0,故C正确;
当x<0.5时,y=kx+b>0,y=mx+n<0;当x>2时,y=kx+b<0,y=mx+n>0,则(kx+b)(mx+n)<0,故D错误;
故选:C.
【点睛】
本题考查了利用函数图象来解一元一次不等式,数形结合是解答本题的关键.
二、填空题
1、-1
【解析】
【分析】
让纵坐标为0得到m的值,计算可得点P的坐标.
【详解】
解:∵点P(3,m+1)在直角坐标系x轴上,
∴m+1=0,
解得m=-1,
故选:-1.
【点睛】
考查点的坐标的确定;用到的知识点为:x轴上点的纵坐标为0.
2、m>1
【解析】
【分析】
由一次函数的性质可得m-1为正,从而可求得m的取值范围.
【详解】
由题意知,m-1>0
则m>1
故答案为:m>1
【点睛】
本题考查了一次函数的图象与性质,熟悉一次函数的图象与性质是关键.
3、
【解析】
【分析】
根据统计表确定两个函数的的交点,然后判断即可.
【详解】
解:根据表可得一次函数y1=ax+b与y2=mx+n的交点坐标是(2,1).
故可得关于x的方程ax﹣mx=n﹣b的解是,
故答案为:.
【点睛】
本题考查了一次函数的性质,正确确定交点坐标是关键.
4、
【解析】
【分析】
当y轴平分∠APB时,点A关于y轴的对称点A'在BP上,利用待定系数法求得A'B的表达式,即可得到点P的坐标.
【详解】
解:如图,当y轴平分∠APB时,点A关于y轴的对称点A'在BP上,
∵A(6,0),
∴A’ (-6,0),
设A'B的表达式为y=kx+b,
把A’ (-6,0),B(﹣3,1)代入,
可得
,
解得,
∴,
令x=0,则y=2,
∴点P的坐标为(0,2),
故答案为:(0,2).
【点睛】
本题主要考查了坐标与图形性质,掌握轴对称的性质以及待定系数法是解决问题的关键.
5、
【解析】
【分析】
根据“上加下减”的原则求解即可.
【详解】
解:将直线向下平移2个单位长度,所得的函数解析式为.
故答案为:.
【点睛】
本题考查的是一次函数的图象的平移,熟知函数图象变换的法则是解答此题的关键.
三、解答题
1、(数学理解)5;(类比迁移)①y=5-2x(x4);②见解析;③x>7或x9或5-2x>9
解得x>7或x7或x
相关试卷
这是一份数学八年级下册第十四章 一次函数综合与测试当堂检测题,共20页。试卷主要包含了,两地相距80km,甲,在平面直角坐标系中,点P,函数y=的自变量x的取值范围是,点在等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试课时训练,共25页。试卷主要包含了已知点A,点A个单位长度.,函数y=的自变量x的取值范围是,如图,一次函数y=kx+b等内容,欢迎下载使用。
这是一份2021学年第十四章 一次函数综合与测试课后复习题,共26页。试卷主要包含了若点在第三象限,则点在.,已知函数和 的图象交于点P等内容,欢迎下载使用。