初中数学北京课改版八年级下册第十四章 一次函数综合与测试同步达标检测题
展开
这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试同步达标检测题,共21页。试卷主要包含了下列命题为真命题的是等内容,欢迎下载使用。
京改版八年级数学下册第十四章一次函数课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一次函数y=-x+2的图象与x轴,y轴分别交于A、B两点,以AB为腰,∠BAC=90°,在第一象限作等腰Rt△ABC,则直线BC的解析式为( )A. B. C. D.2、正比例函数y=mx的图象经过点(-1,2),那么这个函数的解析式为( )A.y=x B.y=x C.y=2x D.y=-2x3、已知点A(a+9,2a+6)在y轴上,a的值为( )A.﹣9 B.9 C.3 D.﹣34、一次函数y=kx+b(k≠0)的图象如图所示,当x>2时,y的取值范围是( )A.y<0 B.y>0 C.y<3 D.y>35、正比例函数的函数值随的增大而减小,则一次函数的图象大致是( )A. B. C. D.6、下列命题为真命题的是( )A.过一点有且只有一条直线与已知直线平行 B.在同一平面内,若,,则C.的算术平方根是9 D.点一定在第四象限7、如图,在一个单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,,是斜边在x轴上,斜边长分别为2,4,6,...的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2021的横坐标为( )A.-1008 B.-1010 C.1012 D.-10128、一次函数y=kx-m,y随x的增大而增大,且km<0,则在坐标系中它的大致图象是( )A. B.C. D.9、若点A(x1,y1)和B(x2,y2) 都在一次函数y=(k)x+2(k为常数)的图像上,且当x1<x2时,y1>y2,则k的值可能是( )A.k=0 B.k=1 C.k=2 D.k=310、在平面直角坐标系中,点P的位置如图所示,则点P的坐标可能是( )A.(4,2) B.(﹣4,2) C.(﹣4,﹣2) D.(2,4)第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如果直线与直线的交点在第二象限,那么b的取值范围是______.2、如果正比例函数y=(k﹣2)x的图象经过第二、四象限,那么k的取值范围是 _____.3、元旦期间,大兴商场搞优惠活动,其活动内容是:凡在本商场一次性购买商品超过100元者,超过100元的部分按8折优惠.在此活动中,小明到该商场一次性购买单价为60元的礼盒()件,则应付款(元)与商品数(件)之间的关系式,化简后的结果是______.4、在平面直角坐标系中,点在轴上,则点的坐标为________.5、对于直线y=kx+b(k≠0):(1)当k>0,b>0时,直线经过第______象限;(2)当k>0,b<0时,直线经过第______象限;(3)当k<0,b>0时,直线经过第______象限;(4)当k<0,b<0时,直线经过第______象限.三、解答题(5小题,每小题10分,共计50分)1、如图1,将射线OX按逆时针方向旋转β角,得到射线OY,如果点P为射线OY上的一点,且OP=a,那么我们规定用(a,β)表示点P在平面内的位置,并记为P(a,β).例如,图2中,如果OM=8,∠XOM=110°,那么点M在平面内的位置,记为M(8,110),根据图形,解答下面的问题:(1)如图3,如果点N在平面内的位置记为N(6,30),那么ON=________;∠XON=________.(2)如果点A,B在平面内的位置分别记为A(5,30),B(12,120),画出图形并求出AOB的面积.2、科学家研究发现,声音在空气中传播的速度y(米/秒)与气温x(℃)有关.当气温是0℃时,音速是331米/秒;当气温是5℃时,音速是334米/秒;当气温是10℃时,音速是337米/秒;当气温是15℃时,音速是340米/秒;当气温是20℃时,音速是343米/秒;当气温是25℃时,音速是346米/秒;当气温是30℃时,音速是349米/秒.(1)请你用表格表示气温与音速之间的关系.(2)表格反映了哪两个变量之间的关系?哪个是自变量?(3)当气温是35℃时,估计音速y可能是多少?(4)能否用一个式子来表示两个变量之间的关系?3、马来西亚航空公司MH370航班自失联以来,我国派出大量救援力量,竭尽全力展开海上搜寻行动.某天中国海巡01号继续在南印度洋海域搜索,发现了一个位于东经101度,南纬25度的可疑物体.如果约定“经度在前,纬度在后”,那么我们可以用有序数对(101,25)表示该可疑物体的位置,仿照此表示方法,东经116度,南纬38度如何用有序数对表示?4、某水果店进行了一次水果促销活动,在该店一次性购买A种水果的单价y(元)与购买量x(千克)的函数关系如图所示,(1)当时,单价y为______元;当单价y为8.8元时,购买量x(千克)的取值范围为______;(2)根据函数图象,当时,求出函数图象中单价y(元)与购买量x(千克)的函数关系式;(3)促销活动期间,张亮计划去该店购买A种水果10千克,那么张亮共需花费多少元?5、已知一次函数的图像经过点A(-1,-2),B(0,1).(1)求k、b的值;(2)画出这个函数的图像;(3)当x>1时,y的取值范围是 . -参考答案-一、单选题1、D【解析】【分析】由题意易得B的坐标是(0,2),A的坐标是(5,0),作CE⊥x轴于点E,则有∠ACE=∠BAO,然后可得△ABO≌△CAE,进而可得C的坐标是(7,5),设直线BC的解析式是y=kx+b,最后利用待定系数法可求解.【详解】解:∵一次函数y=-x+2中,令x=0得:y=2;令y=0,解得x=5,∴B的坐标是(0,2),A的坐标是(5,0).若∠BAC=90°,如图1,作CE⊥x轴于点E,∵∠BAC=90°,∴∠OAB+∠CAE=90°,又∵∠CAE+∠ACE=90°,∴∠ACE=∠BAO.在△ABO与△CAE中,,∴△ABO≌△CAE(AAS),∴OB=AE=2,OA=CE=5,∴OE=OA+AE=2+5=7.则C的坐标是(7,5).设直线BC的解析式是y=kx+b,根据题意得:,解得,∴直线BC的解析式是y=x+2.故选:D.【点睛】本题主要考查一次函数与几何的综合,熟练掌握一次函数的图象与性质是解题的关键.2、D【解析】【分析】把点(-1,2)代入正比例函数y=mx即可求解.【详解】解:∵正比例函数y=mx的图象经过点(-1,2),∴-m=2,∴m=-2,∴这个函数解析式为y=-2x.故选:D【点睛】本题考查了待定系数法求正比例函数解析式,理解待定系数法,把点的坐标代入函数解析式是解题关键.3、A【解析】【分析】根据y轴上点的横坐标为0列式计算即可得解.【详解】解:∵点A(a+9,2a+6)在y轴上,∴a+9=0,解得:a=-9,故选:A.【点睛】本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键.4、A【解析】【分析】观察图象得到直线与x轴的交点坐标为(2,0),根据一次函数性质得到y随x的增大而减小,所以当x>2时,y<0.【详解】∵一次函数y=kx+b(k≠0)与x轴的交点坐标为(2,0),∴y随x的增大而减小,∴当x>2时,y<0.故选:A.【点睛】本题考查了一次函数的性质:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;直线与x轴的交点坐标为.5、C【解析】【分析】因为正比例函数的函数值随的增大而减小,可以判断;再根据判断出的图象的大致位置.【详解】解:正比例函数的函数值随的增大而减小,,一次函数的图象经过一、三、四象限.故选C.【点睛】主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数的图象有四种情况:①当,时,函数的图象经过第一、二、三象限;②当,时,函数的图象经过第一、三、四象限;③当,时,函数的图象经过第一、二、四象限;④当,时,函数的图象经过第二、三、四象限.6、B【解析】【分析】直接利用平行线的判定和性质、算术平方根的定义以及点的坐标特点分别判断即可.【详解】解:A、过直线外一点有且只有一条直线与已知直线平行,原命题是假命题;B、在同一平面内,如果a⊥b,b⊥c,则a//c,原命题是真命题;C、的算术平方根是3,原命题是假命题;D、若a=0,则−a2=0,则点(1,−a2)在x轴上,故原命题是假命题;故选:B.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7、C【解析】【分析】首先确定角码的变化规律,利用规律确定答案即可.【详解】解:∵各三角形都是等腰直角三角形,∴直角顶点的纵坐标的长度为斜边的一半,A3(0,0),A7(2,0),A11(4,0)…,∵2021÷4=505余1,∴点A2021在x轴正半轴,纵坐标是0,横坐标是(2021+3)÷2=1012,∴A2021的坐标为(1012,0).故选:C【点睛】本题是对点的坐标变化规律的考查,根据2021是奇数,求出点的角码是奇数时的变化规律是解题的关键.8、B【解析】【分析】根据一次函数的性质以及有理数乘法的性质,求得、的符号,即可求解.【详解】解:一次函数y=kx-m,y随x的增大而增大,可得,,可得,则一次函数y=kx-m,经过一、三、四象限,故选:B【点睛】本题考查的是一次函数的图象与系数的关系,涉及了一次函数的增减性,有理数乘法的性质,解题的关键是掌握一次函数的有关性质以及有理数乘法的性质,正确判断出、的符号.9、A【解析】【分析】利用一次函数y随x的增大而减小,可得,即可求解.【详解】∵当x1<x2时,y1>y2∴一次函数y=(k)x+2的y随x的增大而减小∴∴∴k的值可能是0故选:A.【点睛】本题考查了一次函数图象上点的坐标特征,解题关键是利用一次函数图象上点的坐标特征,求出.10、A【解析】【分析】根据点在第一象限,结合第一象限点的横纵坐标都为正的进而即可判断【详解】解:由题意可知,点P在第一象限,且横坐标大于纵坐标,A.(4,2)在第一象限,且横坐标大于纵坐标,故本选项符合题意;B.(﹣4,2)在第二象限,故本选项符合题意;C.(﹣4,﹣2)在第三象限,故本选项符合题意;D.(2,4)在第一象限,但横坐标小于纵坐标,故本选项符合题意;故选:A.【点睛】本题考查了各象限点的坐标特征,掌握各象限点的坐标特征是解题的关键.平面直角坐标系中各象限点的坐标特点:①第一象限的点:横坐标>0,纵坐标>0;②第二象限的点:横坐标<0,纵坐标>0;③第三象限的点:横坐标<0,纵坐标<0;④第四象限的点:横坐标>0,纵坐标<0.二、填空题1、b<【解析】【分析】联立两直线解析式求出交点坐标,再根据交点在第二象限列出不等式组求解即可.【详解】解:联立,解得 ,∵交点在第二象限,∴,解不等式①得:,解不等式②得:,∴的取值范围是.故答案为:.【点睛】本题考查了两直线相交的问题,解一元一次不等式组,联立两函数解析式求交点坐标是常用的方法,要熟练掌握并灵活运用.2、【解析】【分析】根据正比例函数的性质列不等式求解即可.【详解】解:∵正比例函数y=(k﹣2)x的的图象经过第二、四象限,∴k﹣2<0,解得,k<2.故填:k<2.【点睛】本题主要考查了正比例函数的性质、正比例函数的图象等知识点,根据正比例函数图象所在的象限列出不等式是解答本题的关键.3、y=48x+20(x>2)##y=20+48x(x>2)【解析】【分析】根据已知表示出买x件礼盒的总钱数以及优惠后价格,进而得出等式即可.【详解】解:∵凡在该商店一次性购物超过 100元者,超过100元的部分按8折优惠,李明到该商场一次性购买单价为60元的礼盒x(x>2)件,∴李明应付货款y(元)与礼盒件数x(件)的函数关系式是:y=(60x-100)×0.8+100=48x+20(x>2),故答案为:y=48x+20(x>2).【点睛】本题主要考查了根据实际问题列一次函数解析式,根据已知得出货款与礼盒件数的等式是解题关键.4、(10,0)【解析】【分析】利用点在轴上的坐标特征,得到纵坐标为0,求出的值,代入横坐标,即可求出点坐标.【详解】解:点在轴上,,故,点横坐标为10,故点坐标为(10,0).故答案为:(10,0).【点睛】本题主要是考查了轴上点的坐标特征,熟练掌握轴上的点的纵坐标为0,是解题的关键.5、 一、二、三 一、三、四 一、二、四 二、三、四【解析】【分析】当k>0时,直线必过一、三象限,k<0时,直线必过二、四象限;当b>0时,直线必过一、二象限,b<0时,直线必过三、四象限;根据以上即可判断.【详解】(1)当k>0时,直线过一、三象限,b>0时,直线过一、二象限,则直线经过第一、二、三象限;故答案为:一、二、三(2)当k>0时,直线过一、三象限,b<0时,直线过三、四象限,则直线经过第一、三、四象限;故答案为:一、三、四(3)当k<0时,直线过二、四象限,b>0时,直线过一、二象限,则直线经过第一、二、四象限;故答案为:一、二、四(4)当k<0时,直线过二、四象限,b<0时,直线过三、四象限,则直线经过第二、三、四象限.故答案为:二、三、四【点睛】本题考查了一次函数的图象与性质,b的几何意义,关键是数形结合.三、解答题1、(1)6,30°;(2)见解析,30【解析】【分析】(1)由题意得第一个坐标表示此点距离原点的距离,第二个坐标表示此点与原点的连线与x轴所夹的角的度数;(2)根据相应的度数判断出△AOB的形状,再利用三角形的面积公式求解即可.【详解】(1)根据点N在平面内的位置N(6,30)可知,ON=6,∠XON=30°.答案:6,30°(2)如图所示:∵A(5,30),B(12,120),∴∠BOX=120°,∠AOX=30°,∴∠AOB=90°,∵OA=5,OB=12,∴△AOB的面积为OA·OB=30.【点睛】本题考查了坐标确定位置及旋转的性质,解决本题的关键是理解所给的新坐标的含义.2、 (1)见解析;(2)两个变量是:传播的速度和温度,温度是自变量;(3) 352米/秒; (4) y=331+x.【解析】【分析】(1)根据题中数据列出表格.(2)找出题中的两个变量.(3)根据传播速度与温度的变化规律进而得出答案.(4)结合(3)中发现得出两个变量之间的关系.【详解】(1)列表如下:x(℃)051015202530y(米/秒)331334337340343346349 (2)两个变量是:传播的速度和温度,温度是自变量.(3) 根据表格中音速y(米/秒)随着气温x(℃)的变化规律可知,当气温再增加5℃,音速就相应增加3米/秒,即为349+3=352(米/秒),当气温是35℃时,估计音速y可能是:352米/秒.(4)根据表格中数据可得出:温度每升高5℃,传播的速度增加3,当x=0时,y=331,故两个变量之间的关系为: y=331+x.【点睛】本题考查了变量与常量以及函数表示方法,理解两个变量的变化规律是得出函数关系式的关键.3、东经度,南纬度可以表示为.【解析】【分析】根据“经度在前,纬度在后”的顺序,可以将东经度,南纬度用有序数对表示.【详解】解:由题意可知东经度,南纬度,可用有序数对表示.故东经度,南纬度表示为.【点睛】本题考察了用有序数对表示位置.解题的关键在于读懂题意中给定的规则.4、(1)10;;(2)函数图象的解析式:;(3)促销活动期间,去该店购买A种水果10千克,那么共需花费9元.【解析】【分析】(1)根据观察函数图象的横坐标,纵坐标,可得结果;(2)根据待定系数法,设函数图象的解析式 (k是常数,b是常数,),将,两个点代入求解即可得函数的解析式;(3)将代入(2)函数解析式即可.【详解】解:(1)观察函数图象的横坐标,纵坐标,不超过5千克时,单价是10元,数量不少于11千克时,单价为8.8元.故答案为:10;;(2)设函数图象的解析式 (k是常数,b是常数,),图象过点,,可得:,解得,函数图象的解析式:;(3)当时,,答:促销活动期间,去该店购买A种水果10千克,那么共需花费9元.【点睛】本题考查了一次函数的应用,待定系数法确定函数解析式等,理解题意,根据函数图象得出信息是解题关键.5、(1);(2)见详解;(3)【解析】【分析】(1)由待定系数法进行计算,即可得到答案;(2)由两点画图法,即可画出一次函数的图像;(3)结合一次函数的性质,即可得到答案.【详解】解:(1)∵一次函数的图像经过点A(-1,-2),B(0,1)∴,∴;(2)由(1)可知,一次函数为经过点A(-1,-2),B(0,1),如图:(3)当时,则,由图像可知,y随x增大而增大,∴当x>1时,y的取值范围是;故答案为:.【点睛】本题考查了待定系数法求一次函数的解析式,画函数图像,解题的关键是正确的求出一次函数的解析式.
相关试卷
这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试课后复习题,共27页。试卷主要包含了如图,一次函数y=kx+b,,两地相距80km,甲等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试当堂达标检测题,共23页。试卷主要包含了变量,有如下关系等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十四章 一次函数综合与测试课堂检测,共24页。试卷主要包含了下列命题中,真命题是,点在等内容,欢迎下载使用。