八年级下册第十四章 一次函数综合与测试课后复习题
展开
这是一份八年级下册第十四章 一次函数综合与测试课后复习题,共23页。试卷主要包含了下列命题中,真命题是,点在第四象限,则点在第几象限等内容,欢迎下载使用。
京改版八年级数学下册第十四章一次函数重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,过点A(0,3)的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的表达式是( )A.y=2x+3 B.y=x﹣3 C.y=x+3 D.y=3﹣x2、如图,在平面直角坐标系中,线段AB的端点为A(﹣2,1),B(1,2),若直线y=kx﹣1与线段AB有交点,则k的值不能是( ).A.-2 B.2C.4 D.﹣43、已知一次函数与一次函数中,函数、与自变量x的部分对应值分别如表1、表2所示:表1:x…01……34… 表2:x…01……543… 则关于x的不等式的解集是( )A. B. C. D.4、下列命题中,真命题是( )A.若一个三角形的三边长分别是a、b、c,则有B.(6,0)是第一象限内的点C.所有的无限小数都是无理数D.正比例函数()的图象是一条经过原点(0,0)的直线5、已知正比例函数y=kx的函数值y随x的增大而减小,则一次函数y=kx-k的图象大致是( )A. B. C. D.6、根据下列表述,能够确定具体位置的是( )A.北偏东25°方向 B.距学校800米处C.温州大剧院音乐厅8排 D.东经20°北纬30°7、一次函数y=mx+n的图象经过一、二、四象限,点A(1,y1),B(3,y2)在该函数图象上,则( )A.y1>y2 B.y1≥y2 C.y1<y2 D.y1≤y28、一次函数y=-x+2的图象与x轴,y轴分别交于A、B两点,以AB为腰,∠BAC=90°,在第一象限作等腰Rt△ABC,则直线BC的解析式为( )A. B. C. D.9、点在第四象限,则点在第几象限( )A.第一象限 B.第二象限 C.第三象限 D.第四象限10、下面关于函数的三种表示方法叙述错误的是( )A.用图象法表示函数关系,可以直观地看出因变量如何随着自变量而变化B.用列表法表示函数关系,可以很清楚地看出自变量取的值与因变量的对应值C.用解析式法表示函数关系,可以方便地计算函数值D.任何函数关系都可以用上述三种方法来表示第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个长方体的底面是一个边长为10cm的正方形,如果高为h(cm)时,体积为V(cm3),则V与h的关系为_______;2、在函数的图象上有,,三个点,则,,的大小关系是_____________.(用“>”连接)3、在平面直角坐标系中,点A(1,4),B(4,2),C(m,﹣m).当以点A、B、C为顶点构成的△ABC周长最小时,m的值为______.4、已知在平面直角坐标系中,点在第一象限,且点到轴的距离为2,到轴的距离为5,则的值为______.5、已知函数y=,那么自变量x的取值范围是_________.三、解答题(5小题,每小题10分,共计50分)1、如图,已知O为坐标原点,B(0 ,3),OB=CD,且OD=2OC,将△BOC沿BC翻折至△BEC,使得点E、O重合,点M是y轴正半轴上的一点且位于点B上方,以点B为端点作一条射线BA,使∠MBA=∠BCO,点F是射线BA上的一点.(1)请直接写出C、D两点的坐标:点C ,点D ;(2)当BF=BC时,连接FE.①求点F的坐标;②求此时△BEF的面积.2、如图,表示一个正比例函数与一个一次函数的图象,它们交于点A(4,3),一次函数的图象与y轴交于点B,且OA=OB.(1)求这两个函数的表达式;(2)求两直线与y轴围成的三角形的面积.3、马来西亚航空公司MH370航班自失联以来,我国派出大量救援力量,竭尽全力展开海上搜寻行动.某天中国海巡01号继续在南印度洋海域搜索,发现了一个位于东经101度,南纬25度的可疑物体.如果约定“经度在前,纬度在后”,那么我们可以用有序数对(101,25)表示该可疑物体的位置,仿照此表示方法,东经116度,南纬38度如何用有序数对表示?4、红太阳大酒店客房部有三人间、双人间和单人间客房,收费数据如下表(例如三人间普通间客房每人每天收费50元).为吸引客源,在五一黄金周期间进行优惠大酬宾,凡团体入住一律五折优惠.一个50人的旅游团在五月二号到该酒店住宿,租住了一些三人间、双人间普通客房,并且每个客房正好住满,一天一共花去住宿费1510元. 普通间(元/人/天)豪华间(元/人/天)贵宾间(元/人/天)三人间50100500双人间70150800单人间1002001500(1)三人间、双人间普通客房各住了多少间?(2)设三人间共住了x人,则双人间住了 人,一天一共花去住宿费用y元表示,写出y与x的函数关系式;(3)在直角坐标系内画出这个函数图象;(4)如果你作为旅游团团长,你认为上面这种住宿方式是不是费用最少?为什么?5、艺术节前夕,为了增添节日气氛,某校决定采购大小两种型号的气球装扮活动场地,计划购买4盒大气球,x盒小气球().A、B两个商场中,两种型号的气球原价一样,都是大气球50元/盒,小气球10元/盒,但给出了不同的优惠方案:A商场:买一盒大气球,送一盒小气球;B商场:一律九折优惠;(1)分别写出在两个商场购买时需要的花费y(元)与x(盒)之间的关系式;(2)如果学校最终决定购买10盒小气球,那么选择在哪个商场购买比较合算? -参考答案-一、单选题1、D【解析】【分析】先求出点B的坐标,然后运用待定系数法就可求出一次函数的表达式.【详解】解:由图可知:A(0,3),xB=1.∵点B在直线y=2x上,∴yB=2×1=2,∴点B的坐标为(1,2),设直线AB的解析式为y=kx+b,则有:,解得:,∴直线AB的解析式为y=-x+3;故选:D.【点睛】本题主要考查了直线图象上点的坐标特征、用待定系数法求一次函数的解析式等知识,根据题意确定直线上两点的坐标是关键.2、B【解析】【分析】当直线y=kx−1过点A时,求出k的值,当直线y=kx−1过点B时,求出k的值,介于二者之间的值即为使直线y=kx−1与线段AB有交点的x的值.【详解】解:①当直线y=kx−1过点A时,将A(−2,1)代入解析式y=kx−1得,k=−1,②当直线y=kx−1过点B时,将B(1,2)代入解析式y=kx−1得,k=3,∵|k|越大,它的图象离y轴越近,∴当k≥3或k≤-1时,直线y=kx−1与线段AB有交点.故选:B.【点睛】本题考查了两直线相交或平行的问题,解题的关键是掌握AB是线段这一条件,不要当成直线.3、D【解析】【分析】用待定系数法求出和的表达式,再解不等式即可得出答案.【详解】由表得:,在一次函数上,∴,解得:,∴,,在一次函数上,∴,解得:,∴,∴为,解得:.故选:D.【点睛】本题考查用待定系数法求一次函数解析式以及解一元一次不等式,掌握待定系数法求解析式是解题的关键.4、D【解析】【分析】根据三角形的三边关系,组平面直角坐标系内点的坐标特征,无理数的定义,正比例函数的定义,逐项判断即可求解.【详解】解:A、若一个三角形的三边长分别是a、b、c,不一定有,则原命题是假命题,故本选项不符合题意;B、(6,0)是 轴上的点,则原命题是假命题,故本选项不符合题意;C、无限不循环小数都是无理数, D、正比例函数()的图象是一条经过原点(0,0)的直线,则原命题是真命题,故本选项符合题意;故选:D【点睛】本题主要考查了三角形的三边关系,组平面直角坐标系内点的坐标特征,无理数的定义,正比例函数的定义,熟练掌握三角形的三边关系,组平面直角坐标系内点的坐标特征,无理数的定义,正比例函数的定义是解题的关键.5、C【解析】【分析】由题意易得k<0,然后根据一次函数图象与性质可进行排除选项.【详解】解:∵正比例函数y=kx(k≠0)函数值随x的增大而减小,∴k<0,∴-k>0,∴一次函数y=kx-k的图象经过一、二、四象限;故选:C.【点睛】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.6、D【解析】【分析】根据确定位置的方法即可判断答案.【详解】A. 北偏东25°方向不能确定具体位置,缺少距离,故此选项错误;B. 距学校800米处不能确定具体位置,缺少方向,故此选项错误;C. 温州大剧院音乐厅8排不能确定具体位置,应具体到8排几号,故此选项错误;D. 东经20°北纬30°可以确定一点的位置,故此选项正确.故选:D.【点睛】本题考查确定位置的方法,掌握确定位置要具体到一点是解题的关键.7、A【解析】【分析】先根据图象在平面坐标系内的位置确定m、n的取值范围,进而确定函数的增减性,最后根据函数的增减性解答即可.【详解】解:∵一次函数y=mx+n的图象经过第一、二、四象限,∴m<0,n>0∴y随x增大而减小,∵1<3,∴y1>y2.故选:A.【点睛】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系、一次函数的增减性等知识点,图象在坐标平面内的位置确定m、n的取值范围成为解答本题的关键.8、D【解析】【分析】由题意易得B的坐标是(0,2),A的坐标是(5,0),作CE⊥x轴于点E,则有∠ACE=∠BAO,然后可得△ABO≌△CAE,进而可得C的坐标是(7,5),设直线BC的解析式是y=kx+b,最后利用待定系数法可求解.【详解】解:∵一次函数y=-x+2中,令x=0得:y=2;令y=0,解得x=5,∴B的坐标是(0,2),A的坐标是(5,0).若∠BAC=90°,如图1,作CE⊥x轴于点E,∵∠BAC=90°,∴∠OAB+∠CAE=90°,又∵∠CAE+∠ACE=90°,∴∠ACE=∠BAO.在△ABO与△CAE中,,∴△ABO≌△CAE(AAS),∴OB=AE=2,OA=CE=5,∴OE=OA+AE=2+5=7.则C的坐标是(7,5).设直线BC的解析式是y=kx+b,根据题意得:,解得,∴直线BC的解析式是y=x+2.故选:D.【点睛】本题主要考查一次函数与几何的综合,熟练掌握一次函数的图象与性质是解题的关键.9、C【解析】【分析】根据点A(x,y)在第四象限,判断x,y的范围,即可求出B点所在象限.【详解】∵点A(x,y)在第四象限,∴x>0,y<0,∴﹣x<0,y﹣2<0,故点B(﹣x,y﹣2)在第三象限.故选:C.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).10、D【解析】【分析】根据函数三种表示方法的特点即可作出判断.【详解】前三个选项的叙述均正确,只有选项D的叙述是错误的,例如一天中的气温随时间的变化是一个函数关系,但此函数关系是无法用函数解析式表示的. 故选:D【点睛】本题考查了函数的三种表示方法,知道三种表示方法的特点是本题的关键.二、填空题1、V=100h【解析】【分析】根据体积公式:体积=底面积×高进行填空即可.【详解】解:V与h的关系为V=100h;故答案为:V=100h.【点睛】本题主要考查了列函数关系式,题目比较简单.2、【解析】【分析】根据一次函数图象的增减性来比较、、三点的纵坐标的大小.【详解】解:一次函数解析式中的,该函数图象上的点的值随的增大而减小.又,.故答案为:.【点睛】本题考查了一次函数图象上点坐标特征,一次函数的增减性,解题的关键是掌握一次函数的增减性,即在中,当时随的而增大,当时,随的增大而减小.3、【解析】【分析】作B点关于直线y=﹣x的对称点B',连接AB',则有BC=B'C,所以△ABC周长最小值为AB+AB'的长,求出直线直线AB'的解析式为y=x+,联立方程组,可求C点坐标.【详解】解:∵C(m,﹣m),∴点C在直线y=﹣x上,作B点关于直线y=﹣x的对称点B',连接AB',∵BC=B'C,∴BC+AC=B'C+AC≥AB',∴△ABC周长=AB+BC+AC=AB+B'C+AC≥AB+AB',∴△ABC周长最小值为AB+AB'的长, ∵B(4,2),∴B'(﹣2,﹣4),∵A(1,4),设直线AB'的解析式为y=kx+b,∴,∴,y=x+,联立方程组,解得,∴C(﹣,),∴m=﹣,故答案为:﹣.【点睛】本题考查轴对称求最短距离,熟练掌握轴对称求最短距离的方法,掌握待定系数法求函数解析式的方法是解题的关键.4、7【解析】【分析】由题意得,,,即可得.【详解】解:由题意得,,,则,故答案为:7.【点睛】本题考查了点的坐标特征,解题的关键是理解题意.5、【解析】【分析】根据二次根式有意义的条件列出不等式,解不等式得到答案.【详解】解:由题意得,,解得,,故答案为:.【点睛】本题考查的是函数自变量的取值范围的确定,掌握二次根式的被开方数的非负数是解题的关键.三、解答题1、(1)(-1 ,0),(2 ,0);(2)①F(-3 ,4);②.【解析】【分析】(1)由B(0 ,3)知OB=3,由OB=CD,且OD=2OC,知OC=1,OD=2,据此求解即可;(2)①过点F作FP⊥轴于点P,利用AAS证明△FPB≌△BOC即可求解;②过点F作FQ⊥BE于点Q,证明FB是∠PBE的角平分线,利用角平分线的性质求解即可.【详解】解:(1)∵B(0 ,3),∴OB=3,∵OB=CD,且OD=2OC,∴OC=1,OD=2,∴C(-1 ,0),D(2 ,0);故答案为:(-1 ,0),(2 ,0);(2)①过点F作FP⊥轴于点P,∵∠PBF=∠BCO,BF=BC,又∠FPB=∠BOC=90°,∴△FPB≌△BOC(AAS),∴FP=BO=3,PB= OC=1,∴PO=4,∴F(-3 ,4);②过点F作FQ⊥BE于点Q,∵∠CBO+∠BCO=90°,∠PBF=∠BCO,∴∠CBO+∠PBF=90°,则∠CBF=90°,由折叠的性质得:∠EBC=∠OBC,EB=BO=3,∴∠EBC +∠EBF=90°,∴∠EBF=∠PBF,即FB是∠PBE的角平分线,又FQ⊥BE,FP⊥轴,∴FQ= FP=3,∴△BEF的面积为BEFQ=.【点睛】本题考查了坐标与图形,全等三角形的判定和性质,角平分线的判定和性质,解答本题的关键是明确题意,找出所求问题需要的条件.2、(1),;(2)【解析】【分析】(1)由点A的坐标及勾股定理即可求得OA与OB的长,从而可得点B的坐标,用待定系数法即可求得函数的解析式;(2)由点A的坐标及OB的长度即可求得△AOB的面积.【详解】∵A(4,3)∴OA=OB==5,∴B(0,-5),设直线OA的解析式为y=kx,则4k=3,k=,∴直线OA的解析式为,设直线AB的解析式为,把A、B两点的坐标分别代入得:,∴,∴直线AB的解析式为y=2x-5.(2).【点睛】本题考查了待定系数法求一次函数的解析式,直线与坐标轴围成的三角形面积等知识,本题重点是求一次函数的解析式.3、东经度,南纬度可以表示为.【解析】【分析】根据“经度在前,纬度在后”的顺序,可以将东经度,南纬度用有序数对表示.【详解】解:由题意可知东经度,南纬度,可用有序数对表示.故东经度,南纬度表示为.【点睛】本题考察了用有序数对表示位置.解题的关键在于读懂题意中给定的规则.4、(1)三人间8间,双人间13间;(2)(50﹣x),y=﹣10x+1750(0≤x<50,且x为整数);(3)见解析;(4)不是费用最少的,理由是y随x的增大而减小,所以最小值是x=48时费用1270元【解析】【分析】①分别设三人间和双人间为m、n,根据人数和钱数列方程组求解;②根据收费列出表达式整理即可;③因为x为人数,并且房间刚好住满所以应该是3的倍数,又剩下的人住双人间所以是2的倍数,因此x应该为6的倍数.【详解】解:(1)设租住三人间m间,双人间n间,根据题意,解得,∴三人间8间,双人间13间;(2)双人间住了(50﹣x)人,根据题意y=[50x+70(50﹣x)]×50%即y=﹣10x+1750(0≤x<50,且x为整数);(3)因为两种房间正好住满所以x的值为3的倍数而(50﹣x)还是2的倍数因此,所作图象上一些点:(0,1750),(6,1690),(12,1630),(18,1570),(24,1510),(30,1450),(36,1390),(42,1330),(48,1270)(4)不是费用最少的,理由是y随x的增大而减小,所以最小值是x=48时费用1270元.【点睛】本题主要考查二元一次方程组的实际应用,一次函数的实际应用,解题的关键在于能正确理解题意.5、(1)A:,B:;(2)A商场更合算【解析】【分析】(1)利用购买大气球盒数×单价+小气球去掉赠送的还需购买的盒数×单价列函数关系得出A商场花费,用购买大气球盒数×单价+小气球购买的盒数×单价之和九折列函数关系得出B商场花费即可;(2)先求A、B两商场花费函数的值,比较大小即可.【详解】解:(1)A:,B:; (2)当时,A:元,B:元,∵,∴选择在A商场购买比较合算.【点睛】本题考查列函数解析式,函数值,比较大小,掌握列函数解析式的方法,求函数值的注意事项是解题关键.
相关试卷
这是一份北京课改版八年级下册第十四章 一次函数综合与测试课堂检测,共24页。试卷主要包含了下列命题中,真命题是,点在等内容,欢迎下载使用。
这是一份北京课改版第十四章 一次函数综合与测试同步练习题,共28页。
这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试当堂达标检测题,共24页。试卷主要包含了已知点,点A个单位长度.等内容,欢迎下载使用。