北京课改版八年级下册第十四章 一次函数综合与测试当堂达标检测题
展开
这是一份北京课改版八年级下册第十四章 一次函数综合与测试当堂达标检测题,共25页。试卷主要包含了下面哪个点不在函数的图像上.等内容,欢迎下载使用。
京改版八年级数学下册第十四章一次函数定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知一次函数y=ax+b(a≠0)的图象经过点(0,1)和(1,3),则b﹣a的值为( )A.﹣1 B.0 C.1 D.22、一次函数y=kx+b的图象如图所示,则下列说法错误的是( )A.y随x的增大而减小B.k<0,b<0C.当x>4时,y<0D.图象向下平移2个单位得y=﹣x的图象3、如图,直角坐标平面xOy内,动点P按图中箭头所示方向依次运动,第1次从点(﹣1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,﹣2),…按这样的运动规律,动点P第2021次运动到点( )A.(2020,﹣2) B.(2020,1) C.(2021,1) D.(2021,﹣2)4、一次函数y=kx+b(k≠0)的图象如图所示,当x>2时,y的取值范围是( )A.y<0 B.y>0 C.y<3 D.y>35、下面哪个点不在函数的图像上( ).A.(-2,3) B.(0,-1) C.(1,-3) D.(-1,-1)6、在探究“水沸腾时温度变化特点”的实验中,下表记录了实验中温度和时间变化的数据.时间/分钟0510152025温度/℃102540557085若温度的变化是均匀的,则18分钟时的温度是( )A.62℃ B.64℃ C.66℃ D.68℃7、关于一次函数y=﹣2x+3,下列结论正确的是( )A.图象与x轴的交点为(,0)B.图象经过一、二、三象限C.y随x的增大而增大D.图象过点(1,﹣1)8、某油箱容量为60升的汽车,加满汽油后行驶了100千米时,邮箱中的汽油大约消耗了,如果加满后汽车的行驶路程为x千米,邮箱中剩余油量为y升,则y与x之间的函数关系式是( )A.y=0.12x B.y=60+0.12x C.y=-60+0.12x D.y=60-0.12x9、用m元钱在网上书店恰好可购买100本书,但是每本书需另加邮寄费6角,购买n本书共需费用y元,则可列出关系式( )A.y=n(+0.6) B.y=n()+0.6C.y=n(+0.6) D.y=n()+0.610、正比例函数的函数值随的增大而减小,则一次函数的图象大致是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标系中,直线交y轴于点A(0,2),交x轴于点B,直线l垂直平分OB交AB于点D,交x轴于点E,点P是直线l上且在第一象限一动点.若是等腰三角形,点P的坐标是______________.2、请写出符合以下两个条件的一个函数解析式______.①过点(-2,1),②在第二象限内,y随x增大而增大.3、将一次函数的图像沿x轴向左平移4个单位长度,所得到的图像对应的函数表达式是______.4、写一个y关于x的函数,同时满足两个条件:(1)图象经过点(-3,2);(2) y随x的增大而增大.这个函数表达式可以为_____________________________.(写出一个即可)5、已知自变量为x的函数y=mx+2-m是正比例函数,则m=_________ .三、解答题(5小题,每小题10分,共计50分)1、某家电销售商城电冰箱的销售价为每台元,空调的销售价为每台元,每台电冰箱的进价比每台空调的进价多元,商场用元购进电冰箱的数量与用元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)现在商场准备一次购进这两种家电共台,设购进电冰箱台,这台家电的销售总利润元,要求购进空调数量不超过电冰箱数量的倍,且购进电冰箱不多于台,请确定获利最大的方案以及最大利润.(3)实际进货时,厂家对电冰箱出厂价下调元,若商店保持这两种家电的售价不变,请你根据以上信息及(2)中条件,设计出使这台家电销售总利润最大的进货方案.2、实际情境:甲、乙两人从相距4千米的两地同时、同向出发,甲每小时走6千米,乙每小时走4千米,小狗随甲一起出发,每小时跑12千米,小狗遇到乙的时候它就往甲这边跑,遇到甲时又往乙这边跑,遇到乙的时候再往甲这边跑…就这样一直跑下去.数学研究:如图,折线、分别表示甲、小狗在行进过程中,离乙的路程y(km)与甲行进时间x(h)之间的部分函数图像.(1)求线段AB对应的函数表达式;(2)求点E的坐标;(3)小狗从出发到它折返后第一次与甲相遇的过程中,直接写出x为何值时,它离乙的路程与它离甲的路程相等?3、已知是x的正比例函数,且当时,y=2.(1)请求出y与x的函数表达式;(2)当x为何值时,函数值y=4;4、已知直线和直线相交于点A,且分别与x轴相交于点B和点C.(1)求点A的坐标;(2)求的面积.5、王亮家距离李刚家6.5千米,星期天王亮骑车去李刚家玩,中途自行车突然“爆胎”,恰好路边有便民服务点,几分钟后车修好了,他加快速度骑车到李刚家.王亮的行驶路程(千米)与所用时间(分钟)之间的函数图象如图所示:(1)求王亮加速后行驶路程(千米)与所用时间(分钟)之间的函数关系式;(2)求当王亮距离李刚家1.5千米时,的值. -参考答案-一、单选题1、A【解析】【分析】用待定系数法求出函数解析式,即可求出a和b的值,进而可求出代数式的值.【详解】解:把点(0,1)和(1,3)代入y=ax+b,得:,解得,∴b﹣a=1﹣2=﹣1.故选:A.【点睛】本题主要考查待定系数法求一次函数解析式,了解一次函数图象上点的坐标代入函数解析式是解题关键.2、B【解析】【分析】由一次函数的图象的走势结合一次函数与轴交于正半轴,可判断A,B,由图象可得:当x>4时,函数图象在轴的下方,可判断C,先求解一次函数的解析式,再利用一次函数图象的平移可判断D,从而可得答案.【详解】解:一次函数y=kx+b的图象从左往右下降,所以y随x的增大而减小,故A不符合题意;一次函数y=kx+b, y随x的增大而减小,与轴交于正半轴,所以 故B符合题意;由图象可得:当x>4时,函数图象在轴的下方,所以y<0,故C不符合题意;由函数图象经过 ,解得: 所以一次函数的解析式为: 把向下平移2个单位长度得:,故D不符合题意;故选B【点睛】本题考查的是一次函数的性质,一次函数的平移,利用待定系数法求解一次函数的解析式,掌握“一次函数的图象与性质”是解本题的关键.3、B【解析】【分析】观察图形可知,每4次运动为一个循环组循环,并且每一个循环组向右运动4个单位,用2021除以4,然后根据商和余数的情况确定运动后点的坐标即可.【详解】解:点的运动规律是每运动四次向右平移四个单位,,动点第2021次运动时向右个单位,点此时坐标为,故选:B.【点睛】本题主要考查平面直角坐标系下的规律探究题,解答时注意探究动点的运动规律,又要注意动点的坐标的象限符号.4、A【解析】【分析】观察图象得到直线与x轴的交点坐标为(2,0),根据一次函数性质得到y随x的增大而减小,所以当x>2时,y<0.【详解】∵一次函数y=kx+b(k≠0)与x轴的交点坐标为(2,0),∴y随x的增大而减小,∴当x>2时,y<0.故选:A.【点睛】本题考查了一次函数的性质:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;直线与x轴的交点坐标为.5、D【解析】【分析】将A,B,C,D选项中的点的坐标分别代入,根据图象上点的坐标性质即可得出答案.【详解】解:A.将(-2,3)代入,当x=-2时,y=3,此点在图象上,故此选项不符合题意;B.将(0,-1)代入,当x=0时,y=-1,此点在图象上,故此选项不符合题意;C.将(1,-3)代入,当x=1时,y=-3,此点在图象上,故此选项不符合题意;D.将(-1,-1)代入,当x=-1时,y=1,此点不在图象上,故此选项符合题意.故选:D.【点睛】本题考查了一次函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式,反之,只要满足函数解析式就一定在函数的图象上.6、B【解析】【分析】根据图表可得:温度与时间的关系符合一次函数关系式,设温度T与时间x的函数关系式为:,将,,代入解析式求解确定函数解析式,然后将代入求解即可得.【详解】解:根据图表可得:温度与时间的关系符合一次函数关系式,设温度T与时间x的函数关系式为:,将,,代入解析式可得:,解得:,∴温度T与时间x的函数关系式为:,将其他点代入均符合此函数关系式,当时,,故选:B.【点睛】题目主要考查一次函数的应用,理解题意,掌握根据待定系数法确定函数解析式是解题关键.7、A【解析】【分析】利用一次函数图象上点的坐标特征,可判断出选项A符合题意;利用一次函数图象与系数的关系,可判断出选项B不符合题意;利用一次函数的性质,可判断出选项C不符合题意;利用一次函数图象上点的坐标特征,可判断出选项D不符合题意.【详解】解:A.当y=0时,﹣2x+3=0,解得:x=,∴一次函数y=﹣2x+3的图象与x轴的交点为(,0),选项A符合题意;B.∵k=﹣2<0,b=3>0,∴一次函数y=﹣2x+3的图象经过第一、二、四象限,选项B不符合题意;C.∵k=﹣2<0,∴y随x的增大而减小,选项C不符合题意;D.当x=1时,y=﹣2×1+3=1,∴一次函数y=﹣2x+3的图象过点(1,1),选项D不符合题意.故选:A.【点睛】本题主要是考查了一次函数图象上点的坐标特征、一次函数的性质,熟练掌握利用函数表达式求解点的坐标,利用一次函数的性质,求解增减性和函数所过象限,是解决本题的关键.8、D【解析】【分析】先求出1千米的耗油量,再求行驶x千米的耗油量,最后求油箱中剩余的油量即可.【详解】解:∵每千米的耗油量为:60×÷100=0.12(升/千米),∴y=60-0.12x,故选:D.【点睛】本题考查了函数关系式,求出1千米的耗油量是解题的关键.9、A【解析】【分析】由题意可得每本书的价格为元,再根据每本书需另加邮寄费6角即可得出答案;【详解】解:因为用m元钱在网上书店恰好可购买100本书,所以每本书的价格为元,又因为每本书需另加邮寄费6角,所以购买n本书共需费用y=n(+0.6)元;故选:A.【点睛】本题考查了列代数式和用关系式表示变量之间的关系,正确理解题意、得到每本书的价格是关键.10、C【解析】【分析】因为正比例函数的函数值随的增大而减小,可以判断;再根据判断出的图象的大致位置.【详解】解:正比例函数的函数值随的增大而减小,,一次函数的图象经过一、三、四象限.故选C.【点睛】主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数的图象有四种情况:①当,时,函数的图象经过第一、二、三象限;②当,时,函数的图象经过第一、三、四象限;③当,时,函数的图象经过第一、二、四象限;④当,时,函数的图象经过第二、三、四象限.二、填空题1、,,,【解析】【分析】利用分类讨论的思想方法分三种情形讨论解答:①,②,③,依据题意画出图形,利用勾股定理和轴对称的性质解答即可得出结论.【详解】交轴于点,..令,则,..直线垂直平分交于点,交轴于点,,点的横坐标为1..①时,如图,过点作交轴于点,则,,..,..同理,.②当时,如图,点在的垂直平分线上,点的纵坐标为1,.③当时,则,如图,,.综上,若是等腰三角形,点的坐标是或或或.故答案为:或或或.【点睛】本题主要考查了一次函数图象的性质,一次函数图象上点的坐标的特征,等腰三角形的性质,勾股定理,线段垂直平分线的性质,利用分类讨论的思想方法解答是解题的关键.2、(答案不唯一)【解析】【分析】根据一次函数的性质,即可求解.【详解】解:根据题意得:符合条件的函数是一次函数,且自变量的系数小于0,过点(-2,1)如 等.故答案为: (答案不唯一)【点睛】本题主要考查了书写一次函数的解析式,熟练掌握一次函数的性质是解题的关键.3、##y=4+2x【解析】【分析】根据一次函数的平移规律:“上加下减,左加右减”来解题即可.【详解】由一次函数的图象沿x轴向左平移4个单位后,得到的图象对应的函数关系式为,化简得:,故答案为:.【点睛】此题主要考查了一次函数图象与几何变换,求直线平移后的解析式时要注意一次函数的平移规律:“上加下减,左加右减”.4、(答案不唯一)【解析】【分析】取y关于x的一次函数,设,把代入求出,得出函数表达式即可.【详解】取y关于x的一次函数,y随x的增大而增大,取,设y关于x的一次函数为,把代入得:,这个函数表达式可以为.故答案为:(答案不唯一).【点睛】本题考查一次函数的性质,掌握一次函数的相关性质是解题的关键.5、2【解析】【分析】根据正比例函数的定义可得答案.【详解】解:∵已知自变量为x的函数y=mx+2-m是正比例函数,∴m≠0,2﹣m=0,∴m=2,故答案为:2.【点睛】解题关键是掌握正比例函数的定义,解题关键是明确正比例函数为y=kx的形式,其中k为常数且k≠0,自变量次数为1.三、解答题1、(1)每台空调的进价为元,则每台电冰箱的进价为元;(2)当购进电冰箱台,空调台获利最大,最大利润为元;(3)当时,购进电冰箱台,空调台销售总利润最大;当时,,各种方案利润相同;当时,购进电冰箱台,空调台销售总利润最大【解析】【分析】设每台空调的进价为元,则每台电冰箱的进价为元,根据商城用元购进电冰箱的数量与用元购进空调的数量相等”,列出方程,即可解答;设购进电冰箱台,这台家电的销售总利润为元,则,由题意:购进空调数量不超过电冰箱数量的倍,且购进电冰箱不多于台,列出不等式组,解得,再由为正整数,的,,,,,,,即合理的方案共有种,然后由一次函数的性质,确定获利最大的方案以及最大利润;当电冰箱出厂价下调元时,则利润,分三种情况讨论:当;当时;当;利用一次函数的性质,即可解答.【详解】解:设每台空调的进价为元,则每台电冰箱的进价为元,根据题意得:,解得:,经检验,是原方程的解,且符合题意,,答:每台空调的进价为元,则每台电冰箱的进价为元.设购进电冰箱台,这台家电的销售总利润为元,则,根据题意得:,解得:,为正整数,,,,,,,,合理的方案共有种,即电冰箱台,空调台;电冰箱台,空调台;电冰箱台,空调台;电冰箱台,空调台;电冰箱台,空调台;电冰箱台,空调台;电冰箱台,空调台;,,随的增大而减小,当时,有最大值,最大值为:元,答:当购进电冰箱台,空调台获利最大,最大利润为元.当厂家对电冰箱出厂价下调元,若商店保持这两种家电的售价不变,则利润,当,即时,随的增大而增大,,当时,这台家电销售总利润最大,即购进电冰箱台,空调台;当时,,各种方案利润相同;当,即时,随的增大而减小,,,当时,这台家电销售总利润最大,即购进电冰箱台,空调台;答:当时,购进电冰箱台,空调台销售总利润最大;当时,,各种方案利润相同;当时,购进电冰箱台,空调台销售总利润最大.【点睛】本题考查了列分式方程的应用、一元一次不等式组的应用以及一次函数的应用,找准数量关系,正确列出分式方程和一元一次不等式组是解题的关键.2、(1);(2);(3)或【解析】【分析】(1)利用待定系数法求线段AB对应的函数表达式即可;(2)设DE对应的函数表达式为,根据k的几何意义可,将点D坐标代入求得b',再与线段AB解析式联立方程组求出交点E坐标即可;(3)利用待定系数法求线段AD对应的函数解析式,分y1=2y3和y1=2y2求解x值即可.【详解】解:(1)设线段AB对应的函数表达式为,由图像得,当时,,当时,,代入得:,解得:,∴线段AB对应的函数表达式为(0≤x≤2);(2)设线段DE对应的函数表达式为,由题意得,,将代入,得,∴线段DE对应的函数表达式为,∵点E是线段AB和线段DE的交点,故E满足:,解得:,∴;(3)设线段AD对应的函数表达式为,将A(0,4)、代入,得:,解得:,∴设AD对应的函数表达式为,由题意,分两种情况:当y=2y3时,由-2x+4=2(-8x+4)得:;当y=2y2时,由-2x+4=2(16x-8)得:,故当或时,它离乙的路程与它离甲的路程相等.【点睛】本题考查一次函数的应用、待定系数法求一次函数表达式,理解题意,理清图象中各点、各线段之间的关系是解答的关键.3、(1)y=+1;(2)x=时,y=4.【解析】【分析】(1)根据正比例函数的定义,形如列出函数表达式,代入数值求得,进而求得表达式;(2)根据的值代入(1),即可求得的值【详解】解:(1)是x的正比例函数,当时,y=2解得表达式为:即(2)由,令即解得 x=时,y=4.【点睛】本题考查了正比例函数的定义,求一次函数解析式,已知函数值求自变量的值,掌握正比函数的定义是解题的关键.4、(1);(2)9【解析】【分析】(1)根据题意联立两直线解析式解二元一次方程组即可求得点的坐标;(2)分别令,即可求得点的坐标,进而求得【详解】解:(1)由题意得 解得, ∴A(1,3). (2)过A作AD⊥x轴于点D.∵y=x+2与x轴交点B(-2,0), y=-x+4与x轴交点C(4,0).∴BC=6. ∵A(1,3),∴AD=3. ∴S△ABC=【点睛】本题考查了两直线交点问题,两直线与坐标轴围成的三角形的面积,数形结合是解题的关键.5、(1)王亮加速后行驶路程(千米)与所用时间(分钟)之间的函数关系式;;(2).【解析】【分析】(1)根据待定系数法求解析式设王亮加速后行驶路程(千米)与所用时间(分钟)之间的函数关系式;,函数过点(15,2)(30,6.5)代入得方程组,然后解方程组即可;(2)利用待定系数法求正比例函数解析式,再根据函数值解方程即可.【详解】解:(1)设王亮加速后行驶路程(千米)与所用时间(分钟)之间的函数关系式;函数过点(15,2)(30,6.5)代入得:,解得:,∴王亮加速后行驶路程(千米)与所用时间(分钟)之间的函数关系式;;(2)设修车之前解析式为,代入(10,2)得:,解得,∴,当s=1.5时,,解得分.【点睛】本题考查一次函数的应用,从函数图像获取信息与信息处理,待定系数法求解析式,解一元一次方程,二元一次方程组,掌握从函数图像获取信息与信息处理,待定系数法求解析式,解一元一次方程,二元一次方程组是解题关键.
相关试卷
这是一份北京课改版八年级下册第十四章 一次函数综合与测试精练,共26页。试卷主要包含了,两地相距80km,甲,若直线y=kx+b经过第一,如图,过点A等内容,欢迎下载使用。
这是一份北京课改版八年级下册第十四章 一次函数综合与测试课时练习,共25页。试卷主要包含了已知点等内容,欢迎下载使用。
这是一份数学八年级下册第十四章 一次函数综合与测试同步练习题,共26页。试卷主要包含了已知点等内容,欢迎下载使用。