年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年京改版八年级数学下册第十四章一次函数专项练习试题(含详细解析)

    立即下载
    加入资料篮
    2021-2022学年京改版八年级数学下册第十四章一次函数专项练习试题(含详细解析)第1页
    2021-2022学年京改版八年级数学下册第十四章一次函数专项练习试题(含详细解析)第2页
    2021-2022学年京改版八年级数学下册第十四章一次函数专项练习试题(含详细解析)第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    北京课改版八年级下册第十四章 一次函数综合与测试随堂练习题

    展开

    这是一份北京课改版八年级下册第十四章 一次函数综合与测试随堂练习题,共26页。试卷主要包含了已知点A,如图,过点A等内容,欢迎下载使用。
    京改版八年级数学下册第十四章一次函数专项练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、点P的坐标为(﹣3,2),则点P位于( )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    2、甲、乙两辆摩托车同时从相距20km的A,B两地出发,相向而行,图中l1,l2分别表示甲、乙两辆摩托车到A地的距离S(km)与行驶时间t(h)的函数关系.则下列说法错误的是(  )

    A.乙摩托车的速度较快
    B.经过0.3小时甲摩托车行驶到A,B两地的中点
    C.当乙摩托车到达A地时,甲摩托车距离A地km
    D.经过0.25小时两摩托车相遇
    3、已知点A(-2,y1)和B(-1,y2)都在直线y=-3x-1上,则y1,y2的大小关系是(  )
    A.y1>y2 B.y1<y2 C.y1=y2 D.大小不确定
    4、如图,在一个单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,,是斜边在x轴上,斜边长分别为2,4,6,...的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2021的横坐标为(  )

    A.-1008 B.-1010 C.1012 D.-1012
    5、一个一次函数图象与直线y=x+平行,且过点(﹣1,﹣25),与x轴、y轴的交点分别为A、B,则在线段AB上(包括端点A、B),横、纵坐标都是整数的点有( )
    A.4个 B.5个 C.6个 D.7个
    6、直线y=﹣ax+a与直线y=ax在同一坐标系中的大致图象可能是(  )
    A. B.
    C. D.
    7、已知点A(x,5)在第二象限,则点B(﹣x,﹣5)在( )
    A.第一象限 B.第二象限 C.第三象限 D.第四象限
    8、如图,过点A(0,3)的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的表达式是(  )

    A.y=2x+3 B.y=x﹣3 C.y=x+3 D.y=3﹣x
    9、关于一次函数y=﹣2x+3,下列结论正确的是(  )
    A.图象与x轴的交点为(,0)
    B.图象经过一、二、三象限
    C.y随x的增大而增大
    D.图象过点(1,﹣1)
    10、函数的图象如下图所示:其中、为常数.由学习函数的经验,可以推断常数、的值满足( )

    A., B.,
    C., D.,
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、甲、乙两人相约周末登山,甲、乙两人距地面的高度y/m与登山时间x/min之间的函数图象如图所示,根据图象所提供的信息解答下列问题:
    (1)b=_______m;
    (2)若乙提速后,乙登山上升速度是甲登山上升速度的3倍,则登山_______min时,他们俩距离地面的高度差为70m.

    2、如图,已知直线:与直线:相交于点:,则关于x的不等式的解集为 _____.

    3、A,B两地相距60km,甲、乙两人从两地出发相向而行,甲先出发,如图,l1,l2表示两人离A地的距离:s(km)与时间t(h)的关系,则乙出发_____h两人恰好相距5千米.

    4、如图,函数y=mx+3与y=的图象交于点A(a,2),则方程组的解为______.

    5、一次函数y=(m-1)x+2的函数值y随x的增大而增大,则m的取值范围是_____.
    三、解答题(5小题,每小题10分,共计50分)
    1、已知一次函数的图像经过点A(-1,-2),B(0,1).
    (1)求k、b的值;
    (2)画出这个函数的图像;
    (3)当x>1时,y的取值范围是 .

    2、如图,小红和小华分别从A,B两地到远离学校的博物馆(A地、B地、学校、博物馆在一条直线上),小红步行,小华骑车.

    (1)小红、小华谁的速度快?
    (2)出发后几小时两人相遇?
    (3)A,B两地离学校分别有多远?
    3、如图,在平面直角坐标系中,一次函数 图象经过点A(1,4),点B是一次函数的图象与正比例函数 的图象的交点.
    (1)求k的值和直线与x轴、y轴的交点C、D的坐标;
    (2)求点B的坐标;
    (3)求△AOB的面积.

    4、疫情期间,乐清市某医药公司计划购进N95型和一次性成人口罩两种款式.若购进N95型10箱和一次性成人口罩20箱,需要32500元;若购进N95型30箱和一次性成人口罩40箱,需要87500元.
    (1)N95型和一次性成人口罩每箱进价分别为多少元?
    (2)由于疫情严峻急需口罩,老板决定再次购进N95型和一次性成人口罩共80箱,口罩工厂对两种产品进行了价格调整,N95型的每箱进价比第一次购进时提高了10%,一次性成人口罩的每箱进价按第一次进价的八折;如果药店此次用于购进N95型和一次性成人口罩两种型号的总费用不超过115000元,则最多可购进N95型多少箱?
    (3)若销售一箱N95型,可获利500元;销售一箱一次性成人口罩,可获利100元,在(2)的条件下,如何进货可使再次购进的口罩获得最大的利润?最大的利润是多少?
    5、如图1,已知直线y=2x+2与y轴,x轴分别交于A,B两点,以B为直角顶点在第二象限作等腰Rt△ABC
    (1)求点C的坐标,并求出直线AC的关系式;
    (2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.
    (3)如图3,在(1)的条件下,直线AC交x轴于点M,P(﹣,k)是线段BC上一点,在x轴上是否存在一点N,使△BPN面积等于△BCM面积的一半?若存在,请求出点N的坐标;若不存在,请说明理由.


    -参考答案-
    一、单选题
    1、B
    【解析】
    【分析】
    根据平面直角坐标系中四个象限中点的坐标特点求解即可.
    【详解】
    解:∵点P的坐标为(﹣3,2),
    ∴则点P位于第二象限.
    故选:B.
    【点睛】
    此题考查了平面直角坐标系中四个象限中点的坐标特点,解题的关键是熟练掌握平面直角坐标系中四个象限中点的坐标特点:第一象限横坐标为正,纵坐标为正;第二象限横坐标为负,纵坐标为正;第三象限横坐标为负,纵坐标为负;第四象限横坐标为正,纵坐标为负.
    2、D
    【解析】
    【分析】
    由题意根据函数图象中的数据和题意可以判断各个选项中的结论是否正确,从而可以解答本题.
    【详解】
    解:由图可得,
    甲、乙行驶的路程相等,乙用的时间短,故乙的速度快,故选项A正确;
    甲的速度为:20÷0.6=(km/h),则甲行驶0.3h时的路程为:×0.3=10(km),即经过0.3小时甲摩托车行驶到A,B两地的中点,故选项B正确;
    当乙摩托车到达A地时,甲摩托车距离A地:×0.5=(km),故选项C正确;
    乙的速度为:20÷0.5=40(km/h),则甲、乙相遇时所用的时间是(小时),故选项D错误;
    故选:D.
    【点睛】
    本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想进行分析解答.
    3、A
    【解析】
    【分析】
    首先判定出一次函数的增减性为y随x的增大而减小,然后即可判断出y1,y2的大小关系.
    【详解】
    解:∵一次函数y=-3x-1中,k=-3<0,
    ∴y随x的增大而减小,
    ∵-2<-1,
    ∴y1>y2.
    故选:A.
    【点睛】
    此题考查了一次函数的增减性,比较一次函数中函数值的大小,解题的关键是根据题意判断出一次函数的增减性.
    4、C
    【解析】
    【分析】
    首先确定角码的变化规律,利用规律确定答案即可.
    【详解】
    解:∵各三角形都是等腰直角三角形,
    ∴直角顶点的纵坐标的长度为斜边的一半,
    A3(0,0),A7(2,0),A11(4,0)…,
    ∵2021÷4=505余1,
    ∴点A2021在x轴正半轴,纵坐标是0,横坐标是(2021+3)÷2=1012,
    ∴A2021的坐标为(1012,0).
    故选:C
    【点睛】
    本题是对点的坐标变化规律的考查,根据2021是奇数,求出点的角码是奇数时的变化规律是解题的关键.
    5、A
    【解析】
    【分析】
    由题意可得:求出符合条件的直线为5x﹣4y﹣75=0,即可求出此直线与与x轴、y轴的交点分别为A(15,0)、B(0,﹣),再设出在直线AB上并且横、纵坐标都是整数的点的坐标,进而结合题意得到不等式求出N的范围,即可得到N的取值得到答案.
    【详解】
    解:设直线AB的解析式为y=kx+b,
    ∵一次函数图象与直线y=x+平行,
    ∴k=,
    又∵所求直线过点(﹣1,﹣25),
    ∴﹣25=×(﹣1)+b,
    解得b=﹣,
    ∴直线AB为y=x﹣,
    ∴此直线与与x轴、y轴的交点分别为A(15,0)、B(0,﹣),
    设在直线AB上并且横、纵坐标都是整数的点的横坐标是x=﹣1+4N,纵坐标是y=﹣25+5N,(N是整数).
    因为在线段AB上这样的点应满足0≤x=﹣1+4N≤15,且﹣<y=﹣25+5N≤0,
    解得:≤N≤4,
    所以N=1,2,3,4共4个,
    故选:A.
    【点睛】
    本题考查一次函数图象上点的坐标特征,根据题意写出x和y的表示形式是解题的关键.
    6、D
    【解析】
    【分析】
    若y=ax过第一、三象限,则a>0,所以y=-ax+a过第一、二、四象限,可对A、B进行判断;若y=ax过第二、四象限,则a<0,-a>0,,所以y=-ax+a过第一、三、四象限,与y轴的交点在y轴负半轴,则可对C、D进行判断.
    【详解】
    解:A、y=ax过第一、三象限,则a>0,所以y=-ax+a过第一、二、四象限,所以A选项不符合题意;
    B、y=ax过第一、三象限,则a>0,所以y=-ax+a过第一、二、四象限,所以B选项不符合题意;
    C、y=ax过第二、四象限,则a<0,-a>0,所以y=-ax+a过第一、三、四象限,与y轴的交点在y轴负半轴,所以C选项不符合题意;
    D、y=ax过第二、四象限,则a<0,-a>0,所以y=-ax+a过第一、三、四象限,与y轴的交点在y轴负半轴,所以D选项符合题意;
    故选D.
    【点睛】
    本题考查了一次函数的图象:一次函数y=kx+b(k≠0)的图象为一条直线,当k>0,图象过第一、三象限;当k<0,图象过第二、四象限;直线与y轴的交点坐标为(0,b).
    7、D
    【解析】
    【分析】
    由题意直接根据各象限内点坐标特征进行分析即可得出答案.
    【详解】
    ∵点A(x,5)在第二象限,
    ∴x<0,
    ∴﹣x>0,
    ∴点B(﹣x,﹣5)在四象限.
    故选:D.
    【点睛】
    本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    8、D
    【解析】
    【分析】
    先求出点B的坐标,然后运用待定系数法就可求出一次函数的表达式.
    【详解】
    解:由图可知:A(0,3),xB=1.
    ∵点B在直线y=2x上,
    ∴yB=2×1=2,
    ∴点B的坐标为(1,2),
    设直线AB的解析式为y=kx+b,
    则有:,
    解得:,
    ∴直线AB的解析式为y=-x+3;
    故选:D.
    【点睛】
    本题主要考查了直线图象上点的坐标特征、用待定系数法求一次函数的解析式等知识,根据题意确定直线上两点的坐标是关键.
    9、A
    【解析】
    【分析】
    利用一次函数图象上点的坐标特征,可判断出选项A符合题意;利用一次函数图象与系数的关系,可判断出选项B不符合题意;利用一次函数的性质,可判断出选项C不符合题意;利用一次函数图象上点的坐标特征,可判断出选项D不符合题意.
    【详解】
    解:A.当y=0时,﹣2x+3=0,解得:x=,
    ∴一次函数y=﹣2x+3的图象与x轴的交点为(,0),选项A符合题意;
    B.∵k=﹣2<0,b=3>0,
    ∴一次函数y=﹣2x+3的图象经过第一、二、四象限,选项B不符合题意;
    C.∵k=﹣2<0,
    ∴y随x的增大而减小,选项C不符合题意;
    D.当x=1时,y=﹣2×1+3=1,
    ∴一次函数y=﹣2x+3的图象过点(1,1),选项D不符合题意.
    故选:A.
    【点睛】
    本题主要是考查了一次函数图象上点的坐标特征、一次函数的性质,熟练掌握利用函数表达式求解点的坐标,利用一次函数的性质,求解增减性和函数所过象限,是解决本题的关键.
    10、B
    【解析】
    【分析】
    由题意根据图象可知,当x>0时,y<0,可知a<0;x=b时,函数值不存在,则b>0.
    【详解】
    解:由图象可知,当x>0时,y<0,
    ∵,
    ∴ax<0,a<0;
    x=b时,函数值不存在,
    即x≠b,结合图象可以知道函数的x取不到的值大概是在1的位置,
    ∴b>0.
    故选:B.
    【点睛】
    本题考查函数的图象性质,能够通过已学的反比例函数图象确定b的取值是解题的关键.
    二、填空题
    1、 30 3、10、13
    【解析】
    【分析】
    (1)根据路程与时间求出乙登山速度,再求2分钟路程即可;
    (2)先求甲速度,再求出乙提速后得速度,再用待定系数法求AB与CD解析式,根据解析式组成方程组求出相遇时间,利用两函数之差=70建构方程求出相遇后相差70米的时间或乙到终点相距70米的时间即可.
    【详解】
    解:(1)内乙的速度为15÷1=15m/min,
    ∴;
    (2)甲登山上升速度是(m/min),乙提速后速度是(m/min).
    (min).
    设甲函数表达式为,
    把(0,100),(20,300)代入,
    得解得
    .
    设乙提速前的函数表达式为.
    把(1,15)代入,得,

    设乙提速后的函数表达式为,
    把(2,30),(11,300)代入,得解得

    当时,解得;
    当时,解得;
    当时,解得.
    综上所述:登山3min、10min、13min时,他们俩距离地面的高度差为70m.
    【点睛】
    本题考查一次函数图像获取信息,待定系数法求函数解析式,方程组解法,利用两者间距离建构方程,掌握一次函数图像获取信息,待定系数法求函数解析式,方程组解法,利用两者间距离建构方程是解题关键.
    2、
    【解析】
    【分析】
    观察函数图象可得当时,直线直线:在直线:的下方,于是得到不等式的解集.
    【详解】
    解:根据图象可知,不等式的解集为.
    故答案为:.
    【点睛】
    本题考查了一次函数的交点问题及不等式,解题的关键是掌握数形结合的解题方法.
    3、0.8或1
    【解析】
    【分析】
    分相遇前或相遇后两种情形分别列出方程即可解决问题.
    【详解】
    解:由题意可知,乙的函数图象是l2,
    甲的速度是=30(km/h),乙的速度是=20(km/h).
    设乙出发x小时两人恰好相距5km.
    由题意得:30(x+0.5)+20x+5=60或30(x+0.5)+20x﹣5=60,
    解得x=0.8或1,
    所以甲出发0.8小时或1小时两人恰好相距5km.
    故答案为:0.8或1.
    【点睛】
    本题考查了一次函数的应用,解题的关键是读懂图象信息,灵活应用速度、路程、时间之间的关系解决问题.
    4、
    【解析】
    【分析】
    把(a,2)代入y=-2x中,求得a值,把交点的坐标转化为方程组的解即可.
    【详解】
    ∵函数y=mx+3与y=的图象交于点A(a,2),
    ∴-2a=2,
    解得a=-1,
    ∴A(-1,2),
    ∴方程组的解为,
    故答案为:.
    【点睛】
    本题考查了一次函数的交点与二元一次方程组的关系,正确理解一次函数解析式的交点坐标与由解析式构成的二元一次方程组的解的关系是解题的关键.
    5、m>1
    【解析】
    【分析】
    由一次函数的性质可得m-1为正,从而可求得m的取值范围.
    【详解】
    由题意知,m-1>0
    则m>1
    故答案为:m>1
    【点睛】
    本题考查了一次函数的图象与性质,熟悉一次函数的图象与性质是关键.
    三、解答题
    1、(1);(2)见详解;(3)
    【解析】
    【分析】
    (1)由待定系数法进行计算,即可得到答案;
    (2)由两点画图法,即可画出一次函数的图像;
    (3)结合一次函数的性质,即可得到答案.
    【详解】
    解:(1)∵一次函数的图像经过点A(-1,-2),B(0,1)
    ∴,
    ∴;
    (2)由(1)可知,一次函数为经过点A(-1,-2),B(0,1),如图:

    (3)当时,则,
    由图像可知,y随x增大而增大,
    ∴当x>1时,y的取值范围是;
    故答案为:.
    【点睛】
    本题考查了待定系数法求一次函数的解析式,画函数图像,解题的关键是正确的求出一次函数的解析式.
    2、(1)小华的速度快;(2)出发后h两人相遇;(3)A地距学校500m,B地距学校200m
    【解析】
    【分析】
    (1)观察纵坐标,可得路程,观察横坐标,可得时间,根据路程与时间的关系,可得速度;
    (2)观察横坐标,可得答案;
    (3)观察纵坐标,可得答案.
    【详解】
    解:(1)由纵坐标看出,小红步行了700-500= 200(m),小华行驶了700-200=500(m),
    由横坐标看出都用了15min,小红的速度是200÷15=(m/min),小华的速度是500÷15= (m/min),
    >,小华的速度快.
    (2)由横坐标看出,出发后h两人相遇.
    (3)由纵坐标看出A地距学校500m,B地距学校200m.
    【点睛】
    本题考查了函数图象,观察函数图象的横坐标、纵坐标得出相关信息是解题关键.
    3、(1)C(5, 0 ), D(O,5 );(2)B点坐标是(3,2);(3)5
    【解析】
    【分析】
    (1)直接把A点坐标代入y=kx+5可求出k的值,再求直线与x轴、y轴的交点C、D的坐标即可;
    (2)根据两直线相交的问题,通过解方程组可得到B点坐标;
    (3)先求出直线AB与x轴的交点C的坐标,然后利用S△AOB=S△AOC-S△BOC进行计算.
    【详解】
    解:(1)把A(1,4)代入y=kx+5得k+5=4,
    解得k=-1;

    则一次函数解析式为y=-x+5,
    令x=0,则y=5;令y=0,则x=5;
    ∴点C的坐标为(5,0),点D的坐标为(0,5);
    (2)解方程组y=-x+5y=23x,得x=3y=2,
    所以点B坐标为(3,2);
    (3)∵点C的坐标为(5,0),点A的坐标为(1,4),点B坐标为(3,2),
    ∴S△AOB=S△AOC-S△BOC
    =×5×4-×5×2
    =5.
    【点睛】
    本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.
    4、(1)N95型和一次性成人口罩每箱进价分别为2250元、500元;(2)最多可购进N95型40箱;(3)采购N95型40个,一次性成人口罩40个可获得最利润为24000元.
    【解析】
    【分析】
    (1)设N95型每箱进价x元,一次性成人口罩每箱进价y元,依题意得10x+20y=32500,30x+40y=87500,联立求解即可;
    (2)设购进N95型a箱,依题意得:2250×(1+10%)a+500×80%×(80-a)≤115000,求出a的范围,结合a为正整数可得a的最大值;
    (3)设购进的口罩获得最大的利润为w,依题意得:w=500a+100(80-a),然后对其进行化简,结合一次函数的性质进行解答.
    【详解】
    (1)解:设N95型每箱进价x元,一次性成人口罩每箱进价y元,依题意得:
    {10x+20y=3250030x+40y=87500 ,解得: {x=2250y=500 ,
    答:N95型和一次性成人口罩每箱进价分别为2250元、500元.
    (2)解:设购进N95型a箱,则一次性成人口罩为(80﹣a)套,依题意得:
    2250(1+10%)a+500×80%(80﹣a)≤115000 .
    解得:a≤40.∵a取正整数,0<a≤40.
    ∴a的最大值为40.
    答:最多可购进N95型40箱.
    (3)解:设购进的口罩获得最大的利润为w,
    则依题意得:w=500a+100(80﹣a)=400a+8000,
    又∵0<a≤40,∴w随a的增大而增大,
    ∴当a=40时,W=400×40+8000=24000元.
    即采购N95型40个,一次性成人口罩40个可获得最利润为24000元.
    答:最大利润为24000元.
    【点睛】
    本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)根据各数量之间的关系,找出w关于a的函数关系式.
    5、(1)C(﹣3,1),y=x+2;(2)见解析;(3)存在,点N(﹣,0)或(,0)
    【解析】
    【分析】
    (1)过点C作CH⊥x轴于点H,根据直线y=2x+2与y轴,x轴分别交于A,B两点,可得点A、B的坐标分别为:(0,2)、(﹣1,0),再证得△CHB≌△BOA,可得BH=OA=2,CH=OB,即可求解;
    (2)过点C作CH⊥x轴于点H,DF⊥x轴于点F,DG⊥y轴于点G,可先证明△BCH≌△BDF,得到BF=BH,再由B(-1,0),C(﹣3,1),可得到OF=OB=1,从而得到 DG=OB=1,进而证得△BOE≌△DGE,即可求证;
    (3)先求出直线BC的表达式为,可得k= ,再求出点M(﹣6,0),从而得到S△BMC,S△BPN,即可求解.
    【详解】
    解:(1)过点C作CH⊥x轴于点H,
    令x=0,则y=2,令y=0,则x=﹣2,则点A、B的坐标分别为:(0,2)、(﹣1,0),

    ∵∠HCB+∠CBH=90°,∠CBH+∠ABO=90°,
    ∴∠ABO=∠BCH,
    ∵∠CHB=∠BOA=90°,BC=BA,
    ∴△CHB≌△BOA(AAS),
    ∴BH=OA=2,CH=OB,则点C(﹣3,1),
    设直线AC的表达式为y=mx+b ,
    将点A、C的坐标代入一次函数表达式:y=mx+b得:
    ,解得:,
    故直线AC的表达式为:y=x+2;
    (2)如图,过点C作CH⊥x轴于点H,DF⊥x轴于点F,DG⊥y轴于点G,

    ∵AC=AD,AB⊥CB,
    ∴BC=BD,
    ∵∠CBH=∠FBD,
    ∴△BCH≌△BDF,
    ∴BF=BH,
    ∵C(﹣3,1),
    ∴OH=3,
    ∵B(-1,0),
    ∴OB=1, BF=BH=2,
    ∴OF=OB=1,
    ∴DG=OB=1,
    ∵∠OEB=∠DEG,
    ∴△BOE≌△DGE,
    ∴BE=DE;
    (3)设直线BC的解析式为 ,
    把点C(﹣3,1),B(﹣1,0),代入,得:
    ,解得: ,
    ∴直线BC的表达式为:,
    将点P坐标代入直线BC的表达式得:k= ,
    ∵直线AC的表达式为:y=x+2,
    ∴点M(﹣6,0),
    ∴S△BMC=MB×yC=×5×1=,
    ∴S△BPN=S△BCM==NB×=NB,
    解得:NB=,
    故点N(﹣,0)或(,0).
    【点睛】
    本题主要考查了求一次函数解析式,等腰三角形的性质,一次函数的性质和图象,熟练掌握利用待定系数法求一次函数解析式,等腰三角形的性质,一次函数的性质和图象是解题的关键.

    相关试卷

    初中数学北京课改版八年级下册第十四章 一次函数综合与测试精练:

    这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试精练,共27页。

    初中数学北京课改版八年级下册第十四章 一次函数综合与测试达标测试:

    这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试达标测试,共25页。试卷主要包含了若直线y=kx+b经过第一等内容,欢迎下载使用。

    数学八年级下册第十四章 一次函数综合与测试同步练习题:

    这是一份数学八年级下册第十四章 一次函数综合与测试同步练习题,共26页。试卷主要包含了已知点等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map