初中北京课改版第十四章 一次函数综合与测试练习
展开
这是一份初中北京课改版第十四章 一次函数综合与测试练习,共25页。试卷主要包含了已知一次函数y=ax+b,一次函数y=等内容,欢迎下载使用。
京改版八年级数学下册第十四章一次函数同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知一次函数y=kx+b的图象如图所示,则一次函数y=﹣bx+k的图象大致是( )A. B. C. D.2、从车站向东走400米,再向北走500米到小红家,从小强家向南走500米,再向东走200米到车站,则小强家在小红家的( )A.正东方向 B.正西方向 C.正南方向 D.正北方向3、平面直角坐标系中,点P(2022,a)(其中a为任意实数),一定不在( )A.第一象限 B.第二象限 C.直线y=x上 D.坐标轴上4、已知一次函数y=ax+b(a≠0)的图象经过点(0,1)和(1,3),则b﹣a的值为( )A.﹣1 B.0 C.1 D.25、一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),且y的值随着x的值的增大而减小,则m的值为( )A. B. C.3 D.6、已知直线交轴于点,交轴于点,直线与直线关于轴对称,将直线向下平移8个单位得到直线,则直线与直线的交点坐标为( )A. B. C. D.7、已知一次函数y=kx+b的图象经过点A(2,0),且当x<2时,y>0,则该函数图象所经过的象限为( )A.一、二、三 B.二、三、四 C.一、三、四 D.一、二、四8、下列函数中,y随x的增大而减小的函数是( )A. B.y=6﹣2x C. D.y=﹣6+2x9、一次函数的自变量的取值增加2,函数值就相应减少4,则k的值为( )A.2 B.-1 C.-2 D.410、点P的坐标为(﹣3,2),则点P位于( )A.第一象限 B.第二象限 C.第三象限 D.第四象限第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、将函数的图像向下平移2个单位长度,则平移后的图像对应的函数表达式是______.2、已知在平面直角坐标系中,点在第一象限,且点到轴的距离为2,到轴的距离为5,则的值为______.3、如图,在平面直角坐标系中,四边形ABOC是正方形,点A的坐标为(1,1),是以点B为圆心,BA为半径的圆弧;是以点O为圆心,OA1为半径的圆弧,是以点C为圆心,CA2为半径的圆弧,是以点A为圆心,AA3为半径的圆弧,继续以点B、O、C、A为圆心按上述作法得到的曲线AA1A2A3A4A5…称为正方形的“渐开线”,那么点A2021的坐标是______.4、若y关于x的函数y=﹣7x+2+m是正比例函数,则m=_____.5、将一次函数的图像沿x轴向左平移4个单位长度,所得到的图像对应的函数表达式是______.三、解答题(5小题,每小题10分,共计50分)1、如图(1)敌方战舰C和我方战舰2号在我方潜艇什么方向?(2)如何确定敌方战舰B的位置?2、王亮家距离李刚家6.5千米,星期天王亮骑车去李刚家玩,中途自行车突然“爆胎”,恰好路边有便民服务点,几分钟后车修好了,他加快速度骑车到李刚家.王亮的行驶路程(千米)与所用时间(分钟)之间的函数图象如图所示:(1)求王亮加速后行驶路程(千米)与所用时间(分钟)之间的函数关系式;(2)求当王亮距离李刚家1.5千米时,的值.3、寒假将至,某健身俱乐部面向大中学生推出优惠活动,活动方案如下:方案一:购买一张学生寒假专享卡,每次健身费用按六折优惠;方案二:不购买学生寒假专享卡,每次健身费用按八折优惠.设某学生健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.在平面直角坐标系中的函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求k2的值;(3)八年级学生小华计划寒假前往该俱乐部健身8次,应选择哪种方案所需费用更少?请说明理由.(4)小华的同学小琳也计划在该俱乐部健身,若她准备300元的健身费用,最多可以健身多少次?4、利用几何图形研究代数问题是建立几何直观的有效途径.(1)如图①,点A的坐标为(4,6),点B为直线y=x在第一象限的图象上一点,坐标为(b,b).①AB2可表示为 ;(用含b的代数式表示)②当AB长度最小时,求点B的坐标.(2)借助图形,解决问题:对于给定的两个数x,y,求使(x﹣b)2+(y﹣b)2达到最小的b.5、如图1,直线与轴交于点,与轴交于点,点与点关于轴对称.(1)求直线的函数表达式;(2)设点是轴上的一个动点,过点作轴的平行线,交直线于点,交直线于点,连接.①若,请直接写出点的坐标 ;②若的面积为,求出点的坐标 ;③若点为线段的中点,连接,如图2,若在线段上有一点,满足,求出点的坐标. -参考答案-一、单选题1、D【解析】【分析】根据题目中的一次函数图像判断出、的正负,进而确定y=﹣bx+k的参数正负,最后根据一次函数图像与参数的关系,找出根据符题意的图像即可.【详解】解:由题意及图像可知:,,y=﹣bx+k中的,,由一次函数图像与参数的关系可知:D选项符合条件,故选:D.【点睛】本题主要是考查了一次函数图像与参数的关系,熟练掌握参数的正负与函数图像的关系,是解决该题的关键.2、B【解析】【分析】根据二人向同一方向走的距离可知二人的方向关系,解答即可.【详解】解:二人都在车站北500米,小红在学校东,小强在学校西,所以小强家在小红家的正西.【点睛】本题考查方向角,解题的关键是画出相应的图形,利用数形结合的思想进行解答.3、B【解析】【分析】对取不同值进行验证分析即可.【详解】解:A、当,点P在第一象限,故A不符合题意.B、由于横坐标为,点P一定不在第二象限,故B符合题意.C、当,点P在直线y=x上,故C不符合题意.D、当时,点P在x轴上,故D不符合题意.故选:B.【点睛】本题主要是考查了横纵坐标的取值与其在直角坐标系中的位置关系,熟练根据横纵坐标的不同取值,判断坐标点所在的位置,是解决该题的关键.4、A【解析】【分析】用待定系数法求出函数解析式,即可求出a和b的值,进而可求出代数式的值.【详解】解:把点(0,1)和(1,3)代入y=ax+b,得:,解得,∴b﹣a=1﹣2=﹣1.故选:A.【点睛】本题主要考查待定系数法求一次函数解析式,了解一次函数图象上点的坐标代入函数解析式是解题关键.5、D【解析】【分析】由一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),利用一次函数图象上点的坐标特征即可得出关于m的方程,解之即可得出m的值,由y的值随着x的值的增大而减小,利用一次函数的性质可得出m-2<0,解之即可得出m<2,进而可得出m=-3.【详解】解:∵一次函数y=(m-2)x+m2-3的图象与y轴交于点M(0,6),∴m2-3=6,即m2=9,解得:m=-3或m=3.又∵y的值随着x的值的增大而减小,∴m-2<0,∴m<2,∴m=-3.故选:D.【点睛】本题考查了一次函数图象上点的坐标特征以及一次函数的性质,利用一次函数图象上点的坐标特征及一次函数的性质,找出关于m的方程及一元一次不等式是解题的关键.6、A【解析】【分析】设直线的解析式为 ,把点,点代入,可得到直线的解析式为,从而得到直线的解析式为 ,再由直线与直线关于轴对称,可得点关于轴对称的点为 ,然后设直线的解析式为 ,可得直线的解析式为,最后将直线与直线的解析式联立,即可求解.【详解】解:设直线的解析式为 ,把点,点代入,得: ,解得:,∴直线的解析式为,∵将直线向下平移8个单位得到直线,∴直线的解析式为 ,∵点关于轴对称的点为 ,设直线的解析式为 ,把点 ,点代入,得: ,解得:,∴直线的解析式为,将直线与直线的解析式联立,得: ,解得: ,∴直线与直线的交点坐标为.故选:A【点睛】本题主要考查了一次函数的平移,一次函数与二元一次方程组的关系,熟练掌握一次函数的平移特征,一次函数与二元一次方程组的关系是解题的关键.7、D【解析】【分析】根据题意画出函数大致图象,根据图象即可得出结论.【详解】解:如图,∵一次函数y=kx+b的图象经过点A(2,0),且当x<2时,y>0,∴该函数图象所经过一、二、四象限,故选:D.【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的性质,数形结合是解题的关键.8、B【解析】【分析】根据一次函数的性质,时,y随x的增大而增大;时,y随x的增大而减小;即可进行判断.【详解】解:A、∵k=>0,∴y随x的增大而增大,故本选项错误;B、∵k=﹣2<0,∴y随x的增大而减小,故本选项正确;C、∵k=>0,∴y随x的增大而增大,故本选项错误;D、∵k=2>0,∴y随x的增大而增大,故本选项错误.故选:B.【点睛】本题考查了一次函数的性质,解题的关键是掌握 时,y随x的增大而增大; 时,y随x的增大而减小.9、C【解析】【分析】首先根据题意表示出x=1时,y=k+3,因为在x=1处,自变量增加2,函数值相应减少4,可得x=3时,函数值是k+3-4,进而得到3k+3=k+3-4,再解方程即可.【详解】解:由题意得:x=1时,y=k+3,∵在x=1处,自变量增加2,函数值相应减少4,∴x=3时,函数值是k+3-4,∴3k+3=k+3-4,解得:k=-2,故选C.【点睛】此题主要考查了求一次函数中的k,关键是弄懂题意,表示出x=1,x=3时的y的值.10、B【解析】【分析】根据平面直角坐标系中四个象限中点的坐标特点求解即可.【详解】解:∵点P的坐标为(﹣3,2),∴则点P位于第二象限.故选:B.【点睛】此题考查了平面直角坐标系中四个象限中点的坐标特点,解题的关键是熟练掌握平面直角坐标系中四个象限中点的坐标特点:第一象限横坐标为正,纵坐标为正;第二象限横坐标为负,纵坐标为正;第三象限横坐标为负,纵坐标为负;第四象限横坐标为正,纵坐标为负.二、填空题1、【解析】【分析】根据“上加下减”的原则求解即可.【详解】解:将直线向下平移2个单位长度,所得的函数解析式为.故答案为:.【点睛】本题考查的是一次函数的图象的平移,熟知函数图象变换的法则是解答此题的关键.2、7【解析】【分析】由题意得,,,即可得.【详解】解:由题意得,,,则,故答案为:7.【点睛】本题考查了点的坐标特征,解题的关键是理解题意.3、(2021,0)【解析】【分析】将四分之一圆弧对应的A点坐标看作顺时针旋转90°,再根据A、A1、A2、A3、A4的坐标找到规律即可.【详解】∵A点坐标为(1,1),且A1为A点绕B点顺时针旋转90°所得∴A1点坐标为(2,0)又∵A2为A1点绕O点顺时针旋转90°所得∴A2点坐标为(0,-2)又∵A3为A2点绕C点顺时针旋转90°所得∴A3点坐标为(-3,1)又∵A4为A3点绕A点顺时针旋转90°所得∴A4点坐标为(1,5)由此可得出规律:An为绕B、O、C、A四点作为圆心依次循环顺时针旋转90°,且半径为1、2、3、、、n,每次增加1.∵2021÷4=505…1故A2021为以点B为圆心,半径为2021的A2020点顺时针旋转90°所得故A2021点坐标为(2021,0).故答案为:(2021,0).【点睛】本题考查了点坐标规律探索,通过点的变化探索出旋转的规律是解题的关键.4、﹣2【解析】【分析】根据正比例函数的定义得到2+m=0,然后解方程得m的值.【详解】解:∵y关于x的函数y=﹣7x+2+m是正比例函数,∴2+m=0,解得m=﹣2.故答案为﹣2.【点睛】本题考查了正比例函数的定义,掌握正比例函数的定义是解题的关键.形如是正比例函数.5、##y=4+2x【解析】【分析】根据一次函数的平移规律:“上加下减,左加右减”来解题即可.【详解】由一次函数的图象沿x轴向左平移4个单位后,得到的图象对应的函数关系式为,化简得:,故答案为:.【点睛】此题主要考查了一次函数图象与几何变换,求直线平移后的解析式时要注意一次函数的平移规律:“上加下减,左加右减”.三、解答题1、(1)敌方战舰C和我方战舰2号在我方潜艇的正东方;(2)要确定敌方战舰B的位置,需要敌方战舰B与我方潜艇的方向和距离两个数据.【解析】【分析】(1)根据图中的位置与方向即可确定.(2)要确定每艘战舰的位置,需要知道每艘战舰分别在什么方向和与我方潜艇的距离是多少.【详解】(1)由图像可知,敌方战舰C和我方战舰2号在我方潜艇正东方.(2)仅知道在我方潜艇北偏东40°方向有小岛,而要确定敌方战舰B的位置,还需要敌方战舰B与我方潜艇的方向和距离两个数据.【点睛】本题考查了方向角的表示,方向角:指正北或指正南方向线与目标方向线所成的小于的角叫做方向角.2、(1)王亮加速后行驶路程(千米)与所用时间(分钟)之间的函数关系式;;(2).【解析】【分析】(1)根据待定系数法求解析式设王亮加速后行驶路程(千米)与所用时间(分钟)之间的函数关系式;,函数过点(15,2)(30,6.5)代入得方程组,然后解方程组即可;(2)利用待定系数法求正比例函数解析式,再根据函数值解方程即可.【详解】解:(1)设王亮加速后行驶路程(千米)与所用时间(分钟)之间的函数关系式;函数过点(15,2)(30,6.5)代入得:,解得:,∴王亮加速后行驶路程(千米)与所用时间(分钟)之间的函数关系式;;(2)设修车之前解析式为,代入(10,2)得:,解得,∴,当s=1.5时,,解得分.【点睛】本题考查一次函数的应用,从函数图像获取信息与信息处理,待定系数法求解析式,解一元一次方程,二元一次方程组,掌握从函数图像获取信息与信息处理,待定系数法求解析式,解一元一次方程,二元一次方程组是解题关键.3、(1),实际意义见解析;(2)20;(3)选择方案一所需费用更少,理由见解析;(4)小琳最多健身18次,理由见解析【解析】【分析】(1)把点(0,30),(10,180)代入y1=k1x+b,得到关于k1和b的二元一次方程组,求解即可; (2)根据方案一每次健身费用按六折优惠,可得打折前的每次健身费用,再根据方案二每次健身费用按八折优惠,求出k2的值; (3)将x=8分别代入y1、y2关于x的函数解析式,比较即可.(4)分别求解小琳选择方案一,方案二的健身次数,再比较即可得到答案.【详解】解:(1)∵过点(0,30),(10,180), ∴,解得:, 表示的实际意义是:购买一张学生暑期专享卡后每次健身费用为15元, b=30表示的实际意义是:购买一张学生暑期专享卡的费用为30元; (2)由题意可得,打折前的每次健身费用为15÷0.6=25(元), 则k2=25×0.8=20; (3)选择方案一所需费用更少.理由如下: 由题意可知,y1=15x+30,y2=20x. 当健身8次时, 选择方案一所需费用:y1=15×8+30=150(元), 选择方案二所需费用:y2=20×8=160(元), ∵150<160, ∴选择方案一所需费用更少.(4)当时, 解得: 即小琳选择方案一时,可以健身18次,当时,则 解得: 即小琳选择方案二时,可以健身15次, 所以小琳最多健身18次.【点睛】本题考查了一次函数的应用,最优化选择问题,解题的关键是理解两种优惠活动方案,求出y1、y2关于x的函数解析式.4、(1)①2b2﹣20b+52;②B(5,5);(2)(x+y)【解析】【分析】(1)①由平面直角坐标系中两点间距离公式可直接得到;②利用配方法及平方的非负性可求得最小值;(2)由“垂线段最短”可求得最小值.【详解】解:(1)①∵点A的坐标为(4,6),点B坐标为(b,b),∴AB2=(4﹣b)2+(6﹣b)2=2b2﹣20b+52;故答案为:2b2﹣20b+52.②AB2=2b2﹣20b+52=2(b﹣5)2+2,∵(b﹣5)2≥0,∴当(b﹣5)2=0时,即b=5时,AB最小,此时B(5,5);(2)如图,设A(x,y),B(b,b),则点B在直线y=x上,欲求(x﹣b)2+(y﹣b)2的最小值,只要在直线y=x上找到一点B′(b0,b0),使得AB的值最小即可.根据垂线段最短可知,当AB′⊥直线y=x时,(x﹣b)2+(y﹣b)2的有最小值.∵(x﹣b)2+(y﹣b)2=(x﹣b0+b0﹣b)2+(y﹣b0+b0﹣b)2=[(x﹣b0)2+(y﹣b0)2]+2[(x﹣b0)+(y﹣b0)](b0﹣b)+2(b0﹣b)2,由图,我们可以把(x﹣b)2+(y﹣b)2看作AB2,(x﹣b0)2+(y﹣b0)2看作AB′2,2(b0﹣b)2可以看作BB′2,由勾股定理可知:2[(x﹣b0)+(y﹣b0)](b0﹣b)=0,∴x﹣b0+y﹣b0=0,∴b0=(x+y).即使(x﹣b)2+(y﹣b)2达到最小的b为(x+y).【点睛】本题考查勾股定理,规律型问题,两点之间距离公式等知识,解题的关键是理解题意,灵活运用所学知识解决问题.5、(1);(2)①,;②点的坐标为,或,;③点F的坐标,.【解析】【分析】(1)先确定出点B坐标和点A坐标,进而求出点C坐标,最后用待定系数法求出直线BC解析式;(2)①设点M(m,0),则点P(m,),则,由B(0,3),C(6,0),则,,,再由勾股定理得,,则,由此求解即可;②设点, ,点在直线上,,,,进行求解即可;③过点作交于,过点作轴于,根据,是等腰直角三角形,再证,得出,,根据点为线段的中点,,求出,设,则, 待定系数法求直线的解析式为,点在上,,,代入得方程解方程即可.【详解】(1)对于,令,,,令,,,,点与点A关于轴对称,,设直线的解析式为,,,直线的解析式为; (2)①设点,,,,,,,,是直角三角形,,,,,故答案为:; ②设点,点在直线上,,点在直线上,,,的面积为,,,,或,; ③过点作交于,过点作轴于,,是等腰直角三角形,,,,,,,,,点为线段的中点,,,,设,则,,则,,,,设直线的解析式为,,解得:,直线的解析式为,点在上,,,,解得:,点的坐标为,.【点睛】本题主要考查了坐标与图形,一次函数与几何综合,全等三角形的性质与判定,等腰直角三角形的性质,解题的关键在于能够熟练掌握待定系数法求一次函数解析式.
相关试卷
这是一份北京课改版八年级下册第十四章 一次函数综合与测试课时训练,共25页。试卷主要包含了下列命题为真命题的是等内容,欢迎下载使用。
这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试达标测试,共20页。试卷主要包含了点在等内容,欢迎下载使用。
这是一份初中数学第十四章 一次函数综合与测试练习,共25页。试卷主要包含了如图,一次函数y=kx+b,直线y=2x-1不经过的象限是,已知函数和 的图象交于点P等内容,欢迎下载使用。