搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年度京改版八年级数学下册第十四章一次函数章节练习试题(含解析)

    2021-2022学年度京改版八年级数学下册第十四章一次函数章节练习试题(含解析)第1页
    2021-2022学年度京改版八年级数学下册第十四章一次函数章节练习试题(含解析)第2页
    2021-2022学年度京改版八年级数学下册第十四章一次函数章节练习试题(含解析)第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学北京课改版八年级下册第十四章 一次函数综合与测试随堂练习题

    展开

    这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试随堂练习题,共26页。试卷主要包含了下列命题中,真命题是,函数y=的自变量x的取值范围是等内容,欢迎下载使用。
    京改版八年级数学下册第十四章一次函数章节练习
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,到达目的地后停止. 甲、乙两人之间的距离y(m)与甲所用时间x(min)之间的函数关系如图所示,给出下列结论:①A,B之间的距离为1200m;②乙行走的速度是甲的1.5倍;③b=800;④a=34,其中正确的结论个数为(  )

    A.4个 B.3个 C.2个 D.1个
    2、如图,直线l是一次函数的图象,下列说法中,错误的是( )

    A.,
    B.若点(-1,)和点(2,)是直线l上的点,则
    C.若点(2,0)在直线l上,则关于x的方程的解为
    D.将直线l向下平移b个单位长度后,所得直线的解析式为
    3、自2021年9月16日起,合肥市出租车价格调整,调整后的价格如图所示,根据图中的数据,下列说法不正确的是( )

    A.出租车的起步价为10元 B.超过起步价以后,每公里加收2元
    C.小明乘坐2.8公里收费为10元 D.小丽乘坐10公里,收费25元
    4、正比例函数的函数值随的增大而减小,则一次函数的图象大致是( )
    A. B. C. D.
    5、如图,l1反映了某公司产品的销售收入与销售量的关系;l2反映了该公司产品的销售成本与销售量的关系. 根据图象判断,该公司盈利时,销售量( )

    A.小于12件 B.等于12件 C.大于12件 D.不低于12件
    6、下面关于函数的三种表示方法叙述错误的是( )
    A.用图象法表示函数关系,可以直观地看出因变量如何随着自变量而变化
    B.用列表法表示函数关系,可以很清楚地看出自变量取的值与因变量的对应值
    C.用解析式法表示函数关系,可以方便地计算函数值
    D.任何函数关系都可以用上述三种方法来表示
    7、下列命题中,真命题是( )
    A.若一个三角形的三边长分别是a、b、c,则有
    B.(6,0)是第一象限内的点
    C.所有的无限小数都是无理数
    D.正比例函数()的图象是一条经过原点(0,0)的直线
    8、函数y=的自变量x的取值范围是(  )
    A.x≠0 B.x≠1 C.x≠±1 D.全体实数
    9、关于一次函数y=﹣2x+3,下列结论正确的是(  )
    A.图象与x轴的交点为(,0)
    B.图象经过一、二、三象限
    C.y随x的增大而增大
    D.图象过点(1,﹣1)
    10、已知直线交轴于点,交轴于点,直线与直线关于轴对称,将直线向下平移8个单位得到直线,则直线与直线的交点坐标为( )
    A. B. C. D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如果 ,y=2,那么x = ______
    2、如图,已知直线:与直线:相交于点:,则关于x的不等式的解集为 _____.

    3、已知函数,如果函数值,那么相应的自变量的取值范围是_______.
    4、已知y与成正比例,且当时,,则y与x之间的函数关系式为______________.
    5、已知函数y=,那么自变量x的取值范围是_________.
    三、解答题(5小题,每小题10分,共计50分)
    1、某家电销售商城电冰箱的销售价为每台元,空调的销售价为每台元,每台电冰箱的进价比每台空调的进价多元,商场用元购进电冰箱的数量与用元购进空调的数量相等.
    (1)求每台电冰箱与空调的进价分别是多少?
    (2)现在商场准备一次购进这两种家电共台,设购进电冰箱台,这台家电的销售总利润元,要求购进空调数量不超过电冰箱数量的倍,且购进电冰箱不多于台,请确定获利最大的方案以及最大利润.
    (3)实际进货时,厂家对电冰箱出厂价下调元,若商店保持这两种家电的售价不变,请你根据以上信息及(2)中条件,设计出使这台家电销售总利润最大的进货方案.
    2、如图,小红和小华分别从A,B两地到远离学校的博物馆(A地、B地、学校、博物馆在一条直线上),小红步行,小华骑车.

    (1)小红、小华谁的速度快?
    (2)出发后几小时两人相遇?
    (3)A,B两地离学校分别有多远?
    3、如图,长方形AOBC在直角坐标系中,点A在y轴上,点B在x轴上,已知点C的坐标是(8,4).
    (1)求对角线AB所在直线的函数关系式;
    (2)对角线AB的垂直平分线MN交x轴于点M,连接AM,求线段AM的长;
    (3)若点P是直线AB上的一个动点,当△PAM的面积与长方形OACB的面积相等时,求点P的坐标.

    4、学生准备组织八年级学生进行数学应用创作大赛,需购买甲、乙两种奖品.如果购买甲奖品2个和乙奖品5个,需花费66元:购买甲奖品3个和乙奖品2个,需花费44元;
    (1)求甲、乙两种奖品的单价各是多少元?
    (2)由于临时有变,只买甲、乙一种奖品即可,且甲奖品按原价8折销售,乙奖品购买8个以内按原价出售,购买8个以上超出的部分按原价的5折销售,设购买x个甲奖品需要y1元,购买x个乙奖品需要y2元,请用x分别表示出y1和y2;
    (3)在(2)的条件下,问买哪一种产品更省钱?
    5、利用几何图形研究代数问题是建立几何直观的有效途径.

    (1)如图①,点A的坐标为(4,6),点B为直线y=x在第一象限的图象上一点,坐标为(b,b).
    ①AB2可表示为    ;(用含b的代数式表示)
    ②当AB长度最小时,求点B的坐标.
    (2)借助图形,解决问题:对于给定的两个数x,y,求使(x﹣b)2+(y﹣b)2达到最小的b.

    -参考答案-
    一、单选题
    1、A
    【解析】
    【分析】
    由图象所给信息对结论判断即可.
    【详解】
    由图象可知当x=0时,甲、乙两人在A、B两地还未出发
    故A,B之间的距离为1200m
    故①正确
    前12min为甲、乙的速度和行走了1200m

    由图象可知乙用了24-4=20min走完了1200m



    故②正确
    又∵两人相遇时停留了4min
    ∴两人相遇后从16min开始继续行走,由图象x=24时的拐点可知,到24min乙到达目的地
    则两人相遇后行走了24-16=8min,两人之间的距离为8×100=800米
    则b=800
    故③正确
    从24min开始为甲独自行走1200-800=400m
    则t=min
    故a=24+10=34
    故④正确
    综上所述①②③④均正确,共有四个结论正确.
    故选:A.
    【点睛】
    本题考查了从函数图象获取信息,运用数形结合的思想是解题的关键.
    2、B
    【解析】
    【分析】
    根据一次函数图象的性质和平移的规律逐项分析即可.
    【详解】
    解:A.由图象可知,,,故正确,不符合题意;
    B. ∵-1,小华的速度快.
    (2)由横坐标看出,出发后h两人相遇.
    (3)由纵坐标看出A地距学校500m,B地距学校200m.
    【点睛】
    本题考查了函数图象,观察函数图象的横坐标、纵坐标得出相关信息是解题关键.
    3、(1);(2)5;(3)点P的坐标为(,-445)或(-,845)
    【解析】
    【分析】
    (1)由坐标系中点的意义结合图形可得出A、B点的坐标,设出对角线AB所在直线的函数关系式,由待定系数法即可求得结论;
    (2)由勾股定理求出AB的长,再结合线段垂直平分线的性质,可得AM=BM,OM=OB−BM,再次利用勾股定理得出AM的长;
    (3)(方法一)先求出直线AM的解析式,设出P点坐标,由点到直线的距离求出AM边上的高h,再结合三角形面积公式与长方形面积公式即可求出P点坐标;
    (方法二)由△PAM的面积与长方形OACB的面积相等可得出S△PAM的值,设点P的坐标为(x,−x+4),分点P在AM的右侧及左侧两种情况,找出关于x的一元一次方程,解之即可得出点P的坐标,此题得解.
    【详解】
    解:(1)∵四边形AOBC为长方形,且点C的坐标是(8,4),
    ∴AO=CB=4,OB=AC=8,
    ∴A点坐标为(0,4),B点坐标为(8,0).
    设对角线AB所在直线的函数关系式为y=kx+b,
    则有4=b0=8k+b,解得:,
    ∴对角线AB所在直线的函数关系式为y=-x+4.
    (2)∵∠AOB=90°,
    ∴勾股定理得:AB=AO2+OB2=45,
    ∵MN垂直平分AB,
    ∴BN=AN=AB=25.
    ∵MN为线段AB的垂直平分线,
    ∴AM=BM
    设AM=a,则BM=a,OM=8-a,
    由勾股定理得,a2=42+(8-a)2,
    解得a=5,即AM=5.
    (3)(方法一)∵OM=3,
    ∴点M坐标为(3,0).
    又∵点A坐标为(0,4),
    ∴直线AM的解析式为y=-x+4.
    ∵点P在直线AB:y=-x+4上,
    ∴设P点坐标为(m,-m+4),
    点P到直线AM:x+y-4=0的距离h=43m-12m+4-4432+12=m2.
    △PAM的面积S△PAM=AM•h=|m|=SOABC=AO•OB=32,
    解得m=± ,
    故点P的坐标为(,-445)或(-,845).

    (方法二)∵S长方形OACB=8×4=32,
    ∴S△PAM=32.
    设点P的坐标为(x,-x+4).
    当点P在AM右侧时,S△PAM=MB•(yA-yP)=×5×(4+x-4)=32,
    解得:x=,
    ∴点P的坐标为(,-445);
    当点P在AM左侧时,S△PAM=S△PMB-S△ABM=MB•yP-10=×5(-x+4)-10=32,
    解得:x=-,
    ∴点P的坐标为(-,845).
    综上所述,点P的坐标为(,-445)或(-,845).
    【点睛】
    本题考查了坐标系中点的意、勾股定理、点到直线的距离、三角形和长方形的面积公式,解题的关键:(1)根据坐标系中点的意义,找到A、B点的坐标;(2)由线段垂直平分线的性质和勾股定理找出BM的长度;(3)(方法一)结合点到直线的距离、三角形和长方形的面积公式找到关于m的一元一次方程;(方法二)利用分割图形求面积法找出关于x的一元一次方程.本题属于中等题,难度不大,运算量不小,这里尤其要注意点P有两个.
    4、(1)甲、乙两种奖品的单价各是8元和10元;(2)y1=6.4x;y2=;(3)当购买28个或以下时,购买甲产品更省钱,当购买29个或以上时,购买乙产品更省钱
    【解析】
    【分析】
    (1)设甲、乙两种奖品的单价各是a元和b元.根据“购买甲奖品2个和乙奖品5个,需花费66元:购买甲奖品3个和乙奖品2个,需花费44元;”列出方程组,即可求解;
    (2)根据购买奖品所需的钱等于单价乘以数量,分别列出关系式,即可求解;
    (3)根据当 时,解得:;当 时,解得:;当 时,解得: ,从而得到当x=时,y1=y2,当x<时,y1<y2,当x>时,y1>y2,再由x为整数,即可求解.
    【详解】
    (1)设甲、乙两种奖品的单价各是a元和b元.根据题意得:

    解得:,
    答:甲、乙两种奖品的单价各是8元和10元;
    (2)根据题意得: ;
    当 时, ,
    当 时, ,
    综上所述,y2=;
    (3)当 时,解得:,
    当 时,解得:,
    当 时,解得: ,
    ∴当x=时,y1=y2,当x<时,y1<y2,当x>时,y1>y2
    ∵x为整数,
    ∴当购买28个或以下时,购买甲产品更省钱,当购买29个或以上时,购买乙产品更省钱.
    【点睛】
    本题主要考查了二元一次方程组的应用,列函数关系式及其应用,明确题意,准确得到等量关系是解题的关键.
    5、(1)①2b2﹣20b+52;②B(5,5);(2)(x+y)
    【解析】
    【分析】
    (1)①由平面直角坐标系中两点间距离公式可直接得到;
    ②利用配方法及平方的非负性可求得最小值;
    (2)由“垂线段最短”可求得最小值.
    【详解】
    解:(1)①∵点A的坐标为(4,6),点B坐标为(b,b),
    ∴AB2=(4﹣b)2+(6﹣b)2=2b2﹣20b+52;
    故答案为:2b2﹣20b+52.
    ②AB2=2b2﹣20b+52=2(b﹣5)2+2,
    ∵(b﹣5)2≥0,
    ∴当(b﹣5)2=0时,即b=5时,AB最小,
    此时B(5,5);
    (2)如图,设A(x,y),B(b,b),则点B在直线y=x上,欲求(x﹣b)2+(y﹣b)2的最小值,只要在直线y=x上找到一点B′(b0,b0),使得AB的值最小即可.
    根据垂线段最短可知,当AB′⊥直线y=x时,(x﹣b)2+(y﹣b)2的有最小值.
    ∵(x﹣b)2+(y﹣b)2
    =(x﹣b0+b0﹣b)2+(y﹣b0+b0﹣b)2
    =[(x﹣b0)2+(y﹣b0)2]+2[(x﹣b0)+(y﹣b0)](b0﹣b)+2(b0﹣b)2,

    由图,我们可以把(x﹣b)2+(y﹣b)2看作AB2,(x﹣b0)2+(y﹣b0)2看作AB′2,2(b0﹣b)2可以看作BB′2,
    由勾股定理可知:2[(x﹣b0)+(y﹣b0)](b0﹣b)=0,
    ∴x﹣b0+y﹣b0=0,
    ∴b0=(x+y).
    即使(x﹣b)2+(y﹣b)2达到最小的b为(x+y).
    【点睛】
    本题考查勾股定理,规律型问题,两点之间距离公式等知识,解题的关键是理解题意,灵活运用所学知识解决问题.

    相关试卷

    初中数学北京课改版八年级下册第十四章 一次函数综合与测试当堂检测题:

    这是一份初中数学北京课改版八年级下册第十四章 一次函数综合与测试当堂检测题,共20页。试卷主要包含了点在第四象限,则点在第几象限,点P的坐标为,,两地相距80km,甲等内容,欢迎下载使用。

    数学八年级下册第十四章 一次函数综合与测试一课一练:

    这是一份数学八年级下册第十四章 一次函数综合与测试一课一练,共31页。试卷主要包含了如图,过点A,如图,一次函数y=kx+b等内容,欢迎下载使用。

    初中北京课改版第十四章 一次函数综合与测试复习练习题:

    这是一份初中北京课改版第十四章 一次函数综合与测试复习练习题,共22页。试卷主要包含了一次函数y=mx﹣n,点A个单位长度.,正比例函数y=kx的图象经过一,已知点A等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map