北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后作业题
展开京改版七年级数学下册第七章观察、猜想与证明专题练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列说法中正确的个数是( )
(1)在同一平面内,a、b、c是直线,a∥b,b∥c,则a∥c
(2)在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a⊥c
(3)在同一平面内,a、b、c是直线,a∥b,a⊥c,则b⊥c
(4)在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c.
A.1 B.2 C.3 D.4
2、如图,已知∠1 = 40°,∠2=40°,∠3 = 140°,则∠4的度数等于( )
A.40° B.36° C.44° D.100°
3、如图,直线AB∥CD,直线AB、CD被直线EF所截,交点分别为点M、点N,若∠AME=130°,则∠DNM的度数为( )
A.30° B.40° C.50° D.60°
4、命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中假命题有( )
A.0个 B.1个 C.2个 D.3个
5、已知一个角等于它的补角的5倍,那么这个角是( )
A.30° B.60° C.45° D.150°
6、如图,平行线AB,CD被直线AE所截.若∠1=70°,则∠2的度数为( )
A.80° B.90° C.100° D.110°
7、如所示各图中,∠1与∠2是对顶角的是( )
A. B.
C. D.
8、若∠A与∠B互为补角,且∠A=28°,则∠B的度数是( )
A.152° B.28° C.52° D.90°
9、若的余角为,则的补角为( )
A. B. C. D.
10、如图,直线,相交于点,,,平分,给出下列结论:①当时,;②为的平分线;③若时,;④.其中正确的结论有( )
A.4个 B.3个 C.2个 D.1个
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,将一副三角板按如图所示的方式摆放,AC∥DF,BC与EF相交于点G,则∠CGF度数为 _____度.
2、如图,,,,则∠CAD的度数为____________.
3、图中∠AOB的余角大小是 _____°(精确到1°).
4、如图,将一条等宽的纸条按图中方式折叠,若∠1=40°,则∠2的度数为 ___.
5、如图,点为直线上一点,.
(1)__________________°,__________________°;
(2)的余角是__________________,的补角是___________________.
三、解答题(5小题,每小题10分,共计50分)
1、直线、相交于点,平分,,,求与的度数.
2、如图①.点O为直线AB上一点,过点O作射线OC,使,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.
(1)将图①中的三角板绕点O逆时针方向旋转至图②,使一边OM在∠BOC的内部,恰好平分∠BOC,问:直线ON是否平分∠AOC?请说明理由:
(2)将图中的三角板绕点O逆时针方向旋转x°,旋转一周为止,在旋转的过程中,直线ON恰好平分∠AOC,则x的值为______.
(3)将图①中的三角板绕点O按顺时针方向旋转至图③的位置,使ON在∠AOC的内部,则∠AOM与∠NOC之间的数量关系为______.
3、一个角的余角的3倍比这个角的补角大18°,求这个角的度数.
4、已知点O为直线AB上一点,将直角三角板MON按如图所示放置,且直角顶点在O处,在内部作射线OC,且OC恰好平分.
(1)若,求的度数;
(2)若,求的度数.
5、已知:如图①,AB∥CD,点F在直线AB、CD之间,点E在直线AB上,点G在直线CD上,∠EFG=90°.
(1)如图①,若∠BEF=130°,则∠FGC= 度;
(2)小明同学发现:如图②,无论∠BEF度数如何变化,∠FEB﹣∠FGC的值始终为定值,并给出了一种证明该发现的辅助线作法:过点E作EM∥FG,交CD于点M.请你根据小明同学提供的辅助线方法,补全下面的证明过程;
(3)拓展应用:如图③,如果把题干中的“∠EFG=90°”条件改为“∠EFG=110°”,其它条件不变,则∠FEB﹣∠FGC= 度.
解:如图②,过点E作EM∥FG,交CD于点M.
∵AB∥CD(已知)
∴∠BEM=∠EMC( )
又∵EM∥FG
∴∠FGC=∠EMC( )
∠EFG+∠FEM=180°( )
即∠FGC=( )(等量代换)
∴∠FEB﹣∠FGC=∠FEB﹣∠BEM=( )
又∵∠EFG=90°
∴∠FEM=90°
∴∠FEB﹣∠FGC=
即:无论∠BEF度数如何变化,∠FEB﹣∠FGC的值始终为定值.
---------参考答案-----------
一、单选题
1、C
【分析】
根据平行线的性质分析判断即可;
【详解】
在同一平面内,a、b、c是直线,a∥b,b∥c,则a∥c,故(1)正确;
在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c,故(2)错误;
在同一平面内,a、b、c是直线,a∥b,a⊥c,则b⊥c,故(3)正确;
在同一平面内,a、b、c是直线,a⊥b,b⊥c,则a∥c.故(4)正确;
综上所述,正确的是(1)(3)(4);
故选C.
【点睛】
本题主要考查了平行线的性质,准确分析判断是解题的关键.
2、A
【分析】
首先根据得到,然后根据两直线平行,同旁内角互补即可求出∠4的度数.
【详解】
∵∠1=40°,∠2=40°,
∴∠1=∠2,
∴PQMN,
∴∠4=180°﹣∠3=40°,
故选:A.
【点睛】
本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.平行线的性质:两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补.平行线的判定:内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.
3、C
【分析】
由对顶角得到∠BMN=130°,然后利用平行线的性质,即可得到答案.
【详解】
解:由题意,
∵∠BMN与∠AME是对顶角,
∴∠BMN=∠AME=130°,
∵AB∥CD,
∴∠BMN+∠DNM=180°,
∴∠DNM=50°;
故选:C.
【点睛】
本题考查了平行线的性质,对顶角相等,解题的关键是掌握所学的知识,正确得到∠BMN=130°.
4、C
【分析】
利用对顶角的性质、平行线的性质分别进行判断后即可确定正确的选项.
【详解】
解:①对顶角相等,正确,是真命题;
②在同一平面内,垂直于同一条直线的两直线平行,正确,是真命题;
③相等的角是对顶角,错误,是假命题,反例“角平分线分成的两个角相等”,但它们不是对顶角;
由“两直线平行,同位角相等”,前提是两直线平行,故④是假命题;
故选:C.
【点睛】
本题考查了命题与定理,解题的关键是了解对顶角的性质、平行线的性质等基础知识.
5、D
【分析】
列方程求出这个角即可.
【详解】
解:设这个角为x,
列方程得:x=5(180°−x)
解得x=150°.
故选:D.
【点睛】
本题考查了补角,若两个角的和等于180°,则这两个角互补,列方程求出这个角是解题的关键.
6、D
【分析】
直接利用对顶角以及平行线的性质分析得出答案.
【详解】
解:
∵∠1=70°,
∴∠1=∠3=70°,
∵ABDC,
∴∠2+∠3=180°,
∴∠2=180°−70°=110°.
故答案为:D.
【点睛】
此题主要考查了平行线的性质以及对顶角,正确掌握平行线的性质是解题关键.
7、B
【分析】
根据对顶角的定义进行判断:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角.
【详解】
解:A.∠1与∠2没有公共顶点,不是对顶角;
B.∠1与∠2有公共顶点,并且两边互为反向延长线,是对顶角;
C.∠1与∠2虽然有公共顶点,但两个角的两边不互为反向延长线,不是对顶角;
D.∠1与∠2虽然有公共顶点,但两个角的两边不互为反向延长线,不是对顶角.
故选:B.
【点睛】
本题主要考查了对顶角的定义,熟记对顶角的定义是解题的关键.
8、A
【分析】
根据两个角互为补角,它们的和为180°,即可解答.
【详解】
解:∵∠A与∠B互为补角,
∴∠A+∠B=180°,
∵∠A=28°,
∴∠B=152°.
故选:A
【点睛】
本题考查了补角,解决本题的关键是熟记补角的定义.
9、C
【分析】
根据余角和补角的定义,先求出,再求出它的补角即可.
【详解】
解:∵的余角为,
∴,
的补角为,
故选:C.
【点睛】
本题考查了余角和补角的运算,解题关键是明确两个角的和为90度,这两个角互为余角,两个角的和为180度,这两个角互为补角.
10、B
【分析】
由邻补角,角平分线的定义,余角的性质进行依次判断即可.
【详解】
解:∵∠AOE=90°,∠DOF=90°,
∴∠BOE=90°=∠AOE=∠DOF,
∴∠AOF+∠EOF=90°,∠EOF+∠EOD=90°,∠EOD+∠BOD=90°,
∴∠EOF=∠BOD,∠AOF=∠DOE,
∴当∠AOF=50°时,∠DOE=50°;
故①正确;
∵OB平分∠DOG,
∴∠BOD=∠BOG,
∴∠BOD=∠BOG=∠EOF=∠AOC,
故④正确;
∵,
∴∠BOD=180°-150°=30°,
∴
故③正确;
若为的平分线,则∠DOE=∠DOG,
∴∠BOG+∠BOD=90°-∠EOE,
∴∠EOF=30°,而无法确定,
∴无法说明②的正确性;
故选:B.
【点睛】
本题考查了邻补角,角平分线的定义,余角的性质,数形结合是解决本题的关键.
二、填空题
1、30
【分析】
先证明再证明再利用平行线的性质与对顶角的性质可得答案.
【详解】
解:如图,记交于点
由题意得:
故答案为:
【点睛】
本题考查的是平行线的判定与性质,掌握“两直线平行,同位角相等与同旁内角互补,两直线平行”是解本题的关键.
2、
【分析】
根据两直线平行内错角相等可得,,再根据角之间的关系即可求出的度数.
【详解】
解:∵∥,,
∴,
∴
故答案为:
【点睛】
本题主要考查了平行线的相关知识,熟练运用两直线平行内错角相等是解答此题的关键.
3、63
【分析】
根据余角的定义:如果两个角的度数和为90度,那么这两个角互为余角,进行求解即可.
【详解】
解:由量角器上的度数可知,∠AOB=27°,
∴∠AOB的余角的度数=90°-∠AOB=63°,
故答案为:63.
【点睛】
本题主要考查了量角器测量角的度数和求一个角的余角,熟知余角的定义是解题的关键.
4、70︒
【分析】
如图,由平行线的性质可求得∠1=∠3,由折叠的性质可求得∠4=∠5,再由平行线的性质可求得∠2.
【详解】
解:如图,
∵a∥b,
∴∠3=∠1=40°,∠2=∠5,
又由折叠的性质可知∠4=∠5,且∠3+∠4+∠5=180°,
∴∠5=(180°-∠3)=70°,
∴∠2=70°,
故答案为:70︒.
【点睛】
本题主要考查平行线的性质和判定,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a∥b,b∥c⇒a∥c.
5、35 55 与
【分析】
(1)由,可得,,所以,,,所以,已知的度数,即可得出与的度数;
(2)由(1)可得的余角是与,要求的补角,即要求的补角,的补角是.
【详解】
解:(1),,
,,
,,,
,
,
,;
(2)由(1)可得的余角是与,
,
的补角是,
的补角是.
故答案为:(1)35,55;(2)与,.
【点睛】
本题主要考查余角、补角以及垂直的定义,熟记补角、余角以及垂直的定义是解题关键.
三、解答题
1、∠3=50°,∠2=65°.
【解析】
【分析】
根据邻补角的性质、角平分线的定义进行解答即可.
【详解】
∵∠FOC=90°,∠1=40°,
∴∠3=180°-∠FOC-∠1 =180°-90°-40°=50°,
∴∠AOD=180°-∠3=180°-50°=130°,
又∵OE平分∠AOD,
∴∠2=∠AOD=65°.
【点睛】
本题考查的是邻补角的概念和性质、角平分线的定义,掌握邻补角之和等于180°是解题的关键.
2、(1)直线ON平分∠AOC.理由见解析;(2)60或240;(3)∠AOM﹣∠NOC=30°
【解析】
【分析】
(1)由角的平分线的定义和等角的余角相等求解;
(2)由∠BOC=120°可得∠AOC=60°,则∠BON=30°,即旋转60°或240°时ON平分∠AOC,据此求解;
(3)因为∠MON=90°,∠AOC=60°,所以∠AOM=90°﹣∠AON、∠NOC=60°﹣∠AON,然后作差即可.
【详解】
解:(1)直线ON平分∠AOC.理由:
设ON的反向延长线为OD,
∵OM平分∠BOC,
∴∠MOC=∠MOB,
又∵OM⊥ON,
∴∠MOD=∠MON=90°,
∴∠COD=∠BON,
又∵∠AOD=∠BON(对顶角相等),
∴∠COD=∠AOD,
∴OD平分∠AOC,
即直线ON平分∠AOC.
(2)∵∠BOC=120°
∴∠AOC=60°,
∴∠BON=∠DOA=30°,
即旋转60°或240°时直线ON平分∠AOC,
由题意得,即x=60或240,
故答案为60或240;
(3)∵∠MON=90°,∠AOC=60°,
∴∠AOM=90°﹣∠AON、∠NOC=60°﹣∠AON,
∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°.
故答案为:∠AOM﹣∠NOC=30°
【点睛】
此题考查了角平分线的定义和角的和差等知识,应该认真审题并仔细观察图形,找到各个量之间的关系,是解题的关键.
3、36°
【解析】
【分析】
根据题意,先设这个角的度数为x°,则这个角的余角的度数为90°-x°,这个角的补角的度数为180°-x°,再列方程进行计算.
【详解】
解:设这个角的度数是x°.
由题意,得 .
解得,
∴这个角的度数为36°.
【点睛】
本题主要考查了一元一次方程的实际应用,与余角补角有关的计算,掌握一元一次方程的解法是解题的关键.
4、(1)48°;(2)45°.
【解析】
【分析】
(1)先根据余角的定义求出∠MOC,再根据角平分线的定义求出∠BOM,然后根据∠AOM=180°-∠BOM计算即可;
(2)根据角的倍分关系以及角平分线的定义即可求解;
【详解】
解:(1)∵∠MON=90°,∠CON=24°,
∴∠MOC=90°-∠CON=66°,
∵OC平分∠MOB,
∴∠BOM=2∠MOC=132°,
∴∠AOM=180°-∠BOM=48°;
(2)∵∠BON=2∠NOC,OC平分∠MOB,
∴∠MOC=∠BOC=3∠NOC,
∵∠MOC+∠NOC=∠MON=90°,
∴3∠NOC+∠NOC=90°,
∴4∠NOC=90°,
∴∠BON=2∠NOC=45°,
∴∠AOM=180°-∠MON-∠BON=180°-90°-45°=45°;
【点睛】
本题考查了角平分线的意义、互补、互余的意义,正确表示各个角,理清各个角之间的关系是得出正确结论的关键.
5、(1)40°;(2)见解析;(3)70°
【解析】
【分析】
(1)过点F作FN∥AB,由∠FEB=150°,可计算出∠EFN的度数,由∠EFG=90°,可计算出∠NFG的度数,由平行线的性质即可得出答案;
(2)根据题目补充理由和相关结论即可;
(3)类似(2)中的方法求解即可.
【详解】
解:(1)过点F作FN∥AB,
∵FN∥AB,∠FEB=130°,
∴∠EFN+∠FEB=180°,
∴∠EFN=180°﹣∠FEB=180°﹣130°=50°,
∵∠EFG=90°,
∴∠NFG=∠EFG﹣∠EFN=90°﹣50°=40°,
∵AB∥CD,
∴FN∥CD,
∴∠FGC=∠NFG=40°.
故答案为:40°;
(2)如图②,过点E作EM∥FG,交CD于点M.
∵AB∥CD(已知)
∴∠BEM=∠EMC(两直线平行,内错角相等)
又∵EM∥FG
∴∠FGC=∠EMC(两直线平行,同位角相等)
∠EFG+∠FEM=180°(两直线平行,同旁内角互补)
即∠FGC=(∠BEM)(等量代换)
∴∠FEB﹣∠FGC=∠FEB﹣∠BEM=(∠FEM)
又∵∠EFG=90°
∴∠FEM=90°
∴∠FEB﹣∠FGC=90°
故答案为:两直线平行,内错角相等,两直线平行,同位角相等,两直线平行,同旁内角互补,∠BEM,∠FEM,90°
(3)过点E作EH∥FG,交CD于点H.
∵AB∥CD
∴∠BEH=∠EHC
又∵EM∥FG
∴∠FGC=∠EHC
∠EFG+∠FEH=180°
即∠FGC=∠BEH
∴∠FEB﹣∠FGC=∠FEB﹣∠BEH=∠FEH
又∵∠EFG=110°
∴∠FEH=70°
∴∠FEB﹣∠FGC=70°
故答案为:70°.
【点睛】
本题主要考查了平行线的判定与性质,熟练掌握平行线的判定与性质进行求解是解决本题的关键.
数学七年级下册第七章 观察、猜想与证明综合与测试课堂检测: 这是一份数学七年级下册第七章 观察、猜想与证明综合与测试课堂检测,共21页。试卷主要包含了以下命题是假命题的是,直线,下列语句中,错误的个数是等内容,欢迎下载使用。
初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试同步练习题: 这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试同步练习题,共23页。试卷主要包含了下列命题中,是真命题的是,如图,能判定AB∥CD的条件是,下列说法等内容,欢迎下载使用。
初中第七章 观察、猜想与证明综合与测试课时训练: 这是一份初中第七章 观察、猜想与证明综合与测试课时训练,共22页。试卷主要包含了下列说法正确的个数是,下列命题中是真命题的是等内容,欢迎下载使用。