


初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后作业题
展开这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后作业题,共21页。试卷主要包含了下列说法中正确的是等内容,欢迎下载使用。
京改版七年级数学下册第七章观察、猜想与证明定向练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列命题中是真命题的是( )
A.对顶角相等 B.两点之间,直线最短
C.同位角相等 D.同旁内角互补
2、如图,点在直线上,,若,则的大小为( )
A.30° B.40° C.50° D.60°
3、若的补角是150°,则的余角是( )
A.30° B.60° C.120° D.150°
4、下列说法中正确的是( )
A.锐角的2倍是钝角 B.两点之间的所有连线中,线段最短
C.相等的角是对顶角 D.若AC=BC,则点C是线段AB的中点
5、如图,已知和都是直角,图中互补的角有( )对.
A.1 B.2 C.3 D.0
6、如图,将一副三角尺按不同位置摆放,下列选项的摆放方式中∠1与∠2互余的是( )
A. B.
C. D.
7、可以用来说明命题“x2<y2,则x<y”是假命题的反例是( )
A.x=4,y=3 B.x=﹣1,y=2 C.x=﹣2,y=1 D.x=2,y=﹣3
8、用反证法证明命题“在同一平面内,若 ,则 a∥c”时,首先应假设( )
A.a∥b B.b∥c C.a 与 c 相交 D.a 与 b
9、如图,直线AB和CD相交于点O,若∠AOC=125°,则∠BOD等于( )
A.55° B.125° C.115° D.65°
10、若的补角是125°,则的余角是( )
A.90° B.54° C.36° D.35°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,已知直线l1∥l2,∠A=125°,∠B=85°,且∠1比∠2大4°,那么∠1=______.
2、如图,在四边形ABCD中,AB∥CD,AD∥BC,点F在BC的延长线上,CE平分∠DCF交AD的延长线于点E,已知∠E=35°,则∠A=___.
3、如图,,.则图中与互补的角是______.
4、如图,已知,且∠1=48°,则∠2=_____,∠3=_____,∠4=_____.
5、如果∠α是直角的,则∠α的补角是______度.
三、解答题(5小题,每小题10分,共计50分)
1、根据解答过程填空(写出推理理由或数学式):
如图,已知∠DAF=∠F,∠B=∠D,试说明AB∥DC.
证明:∵∠DAF=∠F(已知).
∴AD∥BF( ),
∴∠D=∠DCF( ).
∵∠B=∠D(已知),
∴( )=∠DCF(等量代换),
∴AB∥DC( ).
2、如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=110°.将一直角三角板的直角顶点放在点O处(∠OMN=30°),一边OM在射线OB上,另一边ON在直线AB的下方.
(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,且恰好平分∠BOC.则∠BON=______°.
(2)将图1中的三角板绕点O以每秒10°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为多少?
3、已知:锐角∠AOB.
(1)若∠AOB=65°,则∠AOB的余角的度数为________度.
(2)若∠AOB=53°17ʹ,则∠AOB的补角的度数为________.
(3)若∠AOB=31°12ʹ,计算:∠AOB=___________.
(4)若∠AOB=20°21ʹ,计算:3∠AOB.
4、如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE,∠AOC=76°;
(1)求∠DOE的度数;
(2)求∠BOF的度数.
5、如图①,直线AB与直线CD相交于点O,, 过点O作射线.
(1)若射线OF平分, 求的度数;
(2)若将图①中的直线绕点O逆时针旋转至图②, ,当射线平分时,射线C是否平分,请说明理由;
(3)若, , 将图①中的直线绕点O按每秒5° 的速度逆时针旋转 度(),设旋转的时间为t秒,当时,求t的值.
---------参考答案-----------
一、单选题
1、A
【分析】
根据对顶角相等,两点之间,线段最短,两直线平行,同位角相等,同旁内角互补进行判断求解即可.
【详解】
解:A、对顶角相等,是真命题,符合题意;
B、两点之间,直线最短,是假命题,应该是两点之间,线段最短,不符合题意;
C、同位角相等,是假命题,应该是两直线平行,同位角相等,不符合题意;
D、同旁内角互补,是假命题,应该是两直线平行,同旁内角互补,不符合题意;
故选A.
【点睛】
本题主要考查了判断命题真假,解题的关键在于能够熟知相关定义和定理.
2、D
【分析】
根据补角的定义求得∠BOC的度数,再根据余角的定义求得∠BOD的度数.
【详解】
解:∵,
∴∠BOC=180°-150°=30°,
∵,即∠COD=90°,
∴∠BOD=90°-30°=60°,
故选:D
【点睛】
本题考查了补角和余角的计算,熟练掌握补角和余角的定义是解题的关键.
3、B
【分析】
根据补角、余角的定义即可求解.
【详解】
∵的补角是150°
∴=180°-150°=30°
∴的余角是90°-30°=60°
故选B.
【点睛】
此题主要考查余角、补角的求解,解题的关键是熟知如果两个角的和为90度,这两个角就互为余角;补角是指如果两个角的和是一个平角,那么这两个角叫互为补角,其中一个角叫做另一个角的补角
4、B
【分析】
根据锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,即可得到正确结论.
【详解】
解:A.锐角的2倍不一定是钝角,例如:锐角20°的2倍是40°是锐角,故不符合题意;
B.两点之间的所有连线中,线段最短,正确;
C.相等的角不一定是对顶角,故不符合题意;
D.当点C在线段AB上,若AC=BC,则点C是线段AB的中点,故不符合题意;
故选:B.
【点睛】
本题考查了锐角和钝角的概念、线段的性质、对顶角的定义以及中点的性质,解题的关键是:熟练掌握这些性质.
5、B
【分析】
如图,延长BO至点E,根据平角的定义,由∠BOD=90°,得∠DOE=180°−∠DOB=90°,那么∠DOE=∠DOB=∠AOC=90°,故∠AOC+∠BOD=180°.由∠DOE=∠DOB=∠AOC=90°,得∠AOE+∠AOD=∠AOD+∠COD=∠DOC+∠BOC,那么∠AOE=∠COD,∠AOD=∠BOC.由∠AOE+∠AOB=180°,得∠COD+∠AOB=180°.
【详解】
解:如图,延长BO至点E.
∵∠BOD=90°,
∴∠DOE=180°−∠DOB=90°.
∴∠DOE=∠DOB=∠AOC=90°.
∴∠AOC+∠BOD=180°,∠AOE+∠AOD=∠AOD+∠COD=∠DOC+∠BOC.
∴∠AOE=∠COD,∠AOD=∠BOC.
∵∠AOE+∠AOB=180°,
∴∠COD+∠AOB=180°.
综上:∠AOC与∠BOD互补,∠AOB与∠COD互补,共2对.
故选:B.
【点睛】
本题主要考查补角,熟练掌握补角的定义是解决本题的关键.
6、D
【分析】
由题意直接根据三角板的几何特征以及余角的定义进行分析计算判断即可.
【详解】
解:A.∵∠1+∠2度数不确定,
∴∠1与∠2不互为余角,故错误;
B.∵∠1+45°+∠2+45°=180°+180°=360°,
∴∠1+∠2=270°,
即∠1与∠2不互为余角,故错误;
C.∵∠1+∠2=180°,
∴∠1与∠2不互为余角,故错误;
D.∵∠1+∠2+90°=180°,
∴∠1+∠2=90°,
即∠1与∠2互为余角,故正确.
故选:D.
【点睛】
本题主要考查余角和补角,熟练掌握余角的定义即若两个角的和为90°,则这两个角互为余角是解题的关键.
7、D
【分析】
根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.
【详解】
解:当x=2,y=﹣3时,x2<y2,但x>y,
故选:D.
【点睛】
此题考查的是命题与定理,要说明数学命题的错误,只需举出一个反例即可这是数学中常用的一种方法.
8、C
【分析】
用反证法解题时,要假设结论不成立,即假设a与c不平行(或a与c相交).
【详解】
解:原命题“在同一平面内,若a⊥b,c⊥b,则a∥c”,
用反证法时应假设结论不成立,
即假设a与c不平行(或a与c相交).
故答案为:C.
【点睛】
此题考查了反证法证明的步骤:(1)假设原命题结论不成立;(2)根据假设进行推理,得出矛盾,说明假设不成立;(3)原命题正确.
9、B
【分析】
根据对顶角相等即可求解.
【详解】
解:∵直线AB和CD相交于点O,∠AOC=125°,
∴∠BOD等于125°.
故选B.
【点睛】
本题主要考查了对顶角的性质,熟知对顶角相等的性质是解题的关键.
10、D
【分析】
根据题意,得=180°-125°,的余角是90°-(180°-125°)=125°-90°,选择即可.
【详解】
∵的补角是125°,
∴=180°-125°,
∴的余角是90°-(180°-125°)=125°-90°=35°,
故选D.
【点睛】
本题考查了补角,余角的计算,正确列出算式是解题的关键.
二、填空题
1、
【分析】
延长AB,交两平行线与C、D,根据平行线的性质和领补角的性质计算即可;
【详解】
延长AB,交两平行线与C、D,
∵直线l1∥l2,∠A=125°,∠B=85°,
∴,,,
∴,
∴,
又∵∠1比∠2大4°,
∴,
∴,
∴;
故答案是.
【点睛】
本题主要考查了平行线的性质应用,准确计算是解题的关键.
2、110︒度
【分析】
根据平行线的性质和角平分线的性质可得结论.
【详解】
解:∵AD//BC
∴
∵CE平分∠DCF
∴
∴
∵AB//CD
∴
∵AD//BC
∴
∴
故答案为:110︒
【点睛】
本题主要考查了角的平分线以及平行线的性质,熟练掌握平行线的性质是解答本题的关键.
3、
【分析】
利用互补的定义得出与互补的角.
【详解】
解:∵,,
∴,,
∴,
即
∴与互补的角是:
故答案为:
【点睛】
本题考查了补角的概念和垂直的定义,如果两个角的和等于180°(平角),就说这两个角互为补角,简称“互补”,即其中一个角是另一个角的补角.
4、48° 132° 48°
【分析】
根据两直线平行内错角相等可求出∠2,根据两直线平行,同位角相等可求出∠4,同旁内角互补可求出∠3.
【详解】
解:∵ //,∠1=48°,
∴∠2=∠1=48°,
∵ //,∠1=48°,
∴∠4=∠1=48°,
∵ //,
∴∠3+∠4=180°
∴∠3=180°-∠4=180°-48°=132°
故答案为:48°;132°;48°
【点睛】
此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.
5、157.5
【分析】
先根据直角的求出∠α,然后根据补角的定义求解即可.
【详解】
解:由题意知:∠α=90°×=22.5°,
则∠α的补角=180°-22.5°=157.5°
故答案为:157.5
【点睛】
本题考查了角的和倍差的计算和补角的定义,熟练掌握计算方法是解题的关键.
三、解答题
1、内错角相等,两直线平行;两直线平行,内错角相等;∠B;同位角相等,两直线平行.
【解析】
【分析】
根据平行线的性质与判定条件完成证明过程即可.
【详解】
证明:∵∠DAF=∠F(已知).
∴AD∥BF(内错角相等,两直线平行),
∴∠D=∠DCF(两直线平行,内错角相等).
∵∠B=∠D(已知),
∴∠B=∠DCF(等量代换),
∴AB∥DC(同位角相等,两直线平行).
故答案为:内错角相等,两直线平行;两直线平行,内错角相等;∠B;同位角相等,两直线平行.
【点睛】
本题主要考查了平行线的性质与判定,熟知平行线的性质与判定条件是解题的关键.
2、(1)35;(2)5.5或23.5
【解析】
【分析】
(1)先计算∠MOB的度数,再利用互余原理计算即可;
(2)分ON的反向延长线平分∠AOC和ON所在射线平分∠AOC两种情形计算,先计算需要旋转的度数,除以旋转的速度即可得到旋转需要的时间.
【详解】
解:(1)如图2,
∵OM平分∠BOC,
∴∠MOC=∠MOB,
又∵∠BOC=110°
∴∠MOB=55°,
∵∠MON=90°,
∴∠BON=∠MON-∠MOB=35°,
故答案为:35°;
(2)∵∠BOC=110°
∴∠AOC=70°,
当射线NO的延长线恰好平分锐角∠AOC时,
∵∠AOD=∠COD=35°,
∴∠BON=35°,∠BOM=55°,
即逆时针旋转的角度为55°,
由题意得,10t=55,
故t=5.5.
当ON平分∠AOC时,
逆时针旋转的角度为:360°-90°-35°=235°,
由题意得,10t=235,
∴t=23.5;
故t=5.5秒或t=23.5秒.
【点睛】
本题考查了旋转的意义,角的平分线,互余的性质,分类的思想,熟练掌握性质,正确进行分类是解题的关键.
3、(1)25°;(2)126°43ʹ;(3)15°36ʹ;(4)61°3ʹ.
【解析】
【分析】
(1)根据余角的性质,即可求解;
(2)根据补角的性质,即可求解;
(3)用 乘以∠AOB,即可求解;
(4)用3乘以∠AOB,即可求解.
【详解】
解:(1)∠AOB的余角的度数为
(2) ;
(3) ;
(4)3∠AOB=3×20°21ʹ=60°63ʹ=61°3ʹ.
【点睛】
本题主要考查了余角和补角,角的倍分关系,熟练掌握余角和补角的性质,角的倍分关系是解题的关键.
4、(1)38°;(2)33°
【解析】
【分析】
(1)根据对顶角相等得出∠BOD,再根据角平分线计算∠DOE;
(2)求出∠DOE的补角∠COE,再用角平分线得出∠EOF,最后根据∠BOF=∠EOF-∠BOE求解.
【详解】
解:(1)∵∠AOC=76°,
∴∠BOD=∠AOC=76°,
∵OE平分∠BOD,
∴∠DOE=∠BOE=∠BOD=38°;
(2)∵∠DOE=38°,
∴∠COE=180°-∠DOE=142°,
∵OF平分∠COE,
∴∠EOF=∠COE=71°,
∴∠BOF=∠EOF-∠BOE=33°.
【点睛】
本题考查了角平分线的定义,以及对顶角的性质,理解角平分线的定义是关键.
5、(1);(2)平分,理由见解析;(3)秒或秒
【解析】
【分析】
(1)由补角的定义得出∠AOF的度数,由角平分线的定义得出∠FOC的度数,根据余角定义得出的度数;
(2)由得出,由角平分线的定义得出,得即可得出结论;
(3)由余角和补角的定义求得、的度数,然后分当s时,当s时,当s时分别讨论得出结果.
【详解】
解:(1),
,
,
(2) 平分,理由如下:
,
.
OE平分,
即射线OC平分.
(3)∵且,
∴
又∵,
∴,
∴
①当s时
直线绕点O按每秒5°的速度逆时针旋转
解得
②当s时
直线绕点O按每秒5°的速度逆时针旋转
此时无解
③当s时
直线绕点O按每秒5°的速度逆时针旋转
解得35
综上所述,当时, 秒或秒.
【点睛】
本题考查了补角和余角的定义,角平分线的定义,一元一次方程的运用,结合题意学会分类讨论的思想避免漏算答案.
相关试卷
这是一份数学七年级下册第七章 观察、猜想与证明综合与测试同步训练题,共21页。试卷主要包含了下列说法正确的个数是,下列命题中是真命题的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试练习题,共21页。试卷主要包含了一个角的补角比这个角的余角大.,下列说法中,假命题的个数为等内容,欢迎下载使用。
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试练习题,共17页。试卷主要包含了下列命题是真命题的是,如图,直线AB∥CD,直线AB,如图,能判定AB∥CD的条件是,下列说法中,真命题的个数为,一个角的补角比这个角的余角大.等内容,欢迎下载使用。