初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试达标测试
展开这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试达标测试,共22页。试卷主要包含了下列说法不正确的是,下列命题,若的补角是125°,则的余角是等内容,欢迎下载使用。
京改版七年级数学下册第七章观察、猜想与证明必考点解析
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,不能推出a∥b的条件是( )
A.∠4=∠2 B.∠3+∠4=180° C.∠1=∠3 D.∠2+∠3=180°
2、下列语句中,错误的个数是( )
①直线AB和直线BA是两条直线;
②如果,那么点C是线段AB的中点;
③两点之间,线段最短;
④一个角的余角比这个角的补角小.
A.1个 B.2个 C.3个 D.4个
3、如图,下列条件中能判断直线的是( )
A.∠1=∠2 B.∠1=∠5 C.∠2=∠4 D.∠3=∠5
4、下列说法不正确的是( )
A.两点确定一条直线
B.经过一点只能画一条直线
C.射线AB和射线BA不是同一条射线
D.若∠1+∠2=90°,则∠1与∠2互余
5、下列图形中,∠1与∠2不是对顶角的有( )
A.1个 B.2个 C.3个 D.0个
6、如图,已知AO⊥OC,OB⊥OD,∠COD=38°,则∠AOB的度数是( )
A.30º B.145º C.150º D.142º
7、下列命题:①平面内,垂直于同一条直线的两直线平行;②经过直线外一点,有且只有一条直线与这条直线平行;③垂线段最短;④同旁内角互补.其中,正确命题的个数有( )
A.1个 B.2个 C.3个 D.4个
8、若的补角是125°,则的余角是( )
A.90° B.54° C.36° D.35°
9、如果一个角的补角是这个角的4倍,那么这个角为( )
A.36° B.30° C.144° D.150°
10、如图,点D是AB上的一点,点E是AC边上的一点,且∠B=70°,∠ADE=70°,∠DEC=100°,则∠C是( )
A.70° B.80° C.100° D.110°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,于点F,于点D,E是AC上一点,,则图中互相平行的直线______.
2、已知∠1=71°,则∠1的补角等于__________度.
3、如图,AB∥CD,∠EGB=50°,则∠CHG的大小为 _____.
4、如图所示,,点B,O,D在同一直线上,若,则的度数为______.
5、如图,将两块三角板的直角顶点重合后叠放在一起,若∠1=40°,则∠2=_____°.
三、解答题(5小题,每小题10分,共计50分)
1、如图,直线AB与CD相交于点O,OE是∠COB的平分线,OE⊥OF,∠AOD=74°,求∠COF的度数.
2、问题情境:如图1,,,,求的度数.
小明的思路是:如图2,过作,通过平行线性质,可得______.
问题迁移:如图3,,点在射线上运动,,.
(1)当点在、两点之间运动时,、、之间有何数量关系?请说明理由.
(2)如果点在、两点外侧运动时(点与点、、三点不重合),请你直接写出、、之间有何数量关系.
3、如图所示,直线AB、CD相交于点O,∠1=65°,求∠2、∠3、∠4的度数
4、如图①,直线AB与直线CD相交于点O,, 过点O作射线.
(1)若射线OF平分, 求的度数;
(2)若将图①中的直线绕点O逆时针旋转至图②, ,当射线平分时,射线C是否平分,请说明理由;
(3)若, , 将图①中的直线绕点O按每秒5° 的速度逆时针旋转 度(),设旋转的时间为t秒,当时,求t的值.
5、完成下面的证明
如图,点B在AG上,AGCD,CF平分∠BCD,∠ABE=∠FCB,BE⊥AF点E.
求证:∠F=90°.
证明:∵AGCD(已知)
∴∠ABC=∠BCD(____)
∵∠ABE=∠FCB(已知)
∴∠ABC﹣∠ABE=∠BCD﹣∠FCB
即∠EBC=∠FCD
∵CF平分∠BCD(已知)
∴∠BCF=∠FCD(____)
∴____=∠BCF(等量代换)
∴BECF(____)
∴____=∠F(____)
∵BE⊥AF(已知)
∴____=90°(____)
∴∠F=90°.
---------参考答案-----------
一、单选题
1、B
【分析】
根据平行线的判定方法,逐项判断即可.
【详解】
解:、和是一对内错角,当时,可判断,故不符合题意;
、和是邻补角,当时,不能判定,故符合题意;
、和是一对同位角,当时,可判断,故不合题意;
、和是一对同旁内角,当时,可判断,故不合题意;
故选B.
【点睛】
本题考查了平行线的判定.解题的关键是:正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.
2、B
【分析】
根据直线的定义、线段中点的定义、线段的性质、余角与补角的定义分别判断.
【详解】
解:①直线AB和直线BA是同一条直线,故该项符合题意;
②如果,那么点C不一定是线段AB的中点,故该项符合题意;
③两点之间,线段最短,故该项不符合题意;
④一个角的余角比这个角的补角小,故该项不符合题意,
故选:B.
【点睛】
此题考查了直线的定义、线段中点的定义、线段的性质、余角与补角的定义,属于基础定义题型.
3、C
【分析】
利用平行线的判定方法判断即可得到结果.
【详解】
解:A、根据∠1=∠2不能判断直线l1∥l2,故本选项不符合题意.
B、根据∠1=∠5不能判断直线l1∥l2,故本选项不符合题意.
C、根据“内错角相等,两直线平行”知,由∠2=∠4能判断直线l1∥l2,故本选项符合题意.
D、根据∠3=∠5不能判断直线l1∥l2,故本选项不符合题意.
故选:C.
【点睛】
此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.
4、B
【分析】
根据两点确定一条直线,即可判断A;根据过一点可以画无数条直线可以判断B;根据射线的表示方法即可判断C;根据余角的定义,可以判断D.
【详解】
解:A、两点确定一条直线,说法正确,不符合题意;
B、过一点可以画无数条直线,说法错误,符合题意;
C、射线AB和射线BA不是同一条射线,说法正确,不符合题意;
D、若∠1+∠2=90°,则∠1与∠2互余,说法正确,不符合题意;
故选B.
【点睛】
本题主要考查了两点确定一条直线,;过一点可以画无数条直线,射线的表示方法余角的定义,熟知相关知识是解题的关键.
5、C
【分析】
根据对顶角的定义:有公共顶点且两条边都互为反向延长线的两个角称为对顶角,逐一判断即可.
【详解】
解:①中∠1和∠2的两边不互为反向延长线,故①符合题意;
②中∠1和∠2是对顶角,故②不符合题意;
③中∠1和∠2的两边不互为反向延长线,故③符合题意;
④中∠1和∠2没有公共点,故④符合题意.
∴∠1 和∠2 不是对顶角的有3个,
故选C.
【点睛】
此题考查的是对顶角的识别,掌握对顶角的定义是解决此题的关键.
6、D
【分析】
根据垂直的定义得到∠AOC=∠DOB=90°,由互余关系得到∠BOC=52°,然后计算∠AOC+∠BOC即可.
【详解】
解:∵AO⊥OC,OB⊥OD,
∴∠AOC=∠DOB=90°,
而∠COD=38°,
∴∠BOC=90°-∠COD=90°-38°=52°,
∴∠AOB=∠AOC+∠BOC=90°+52°=142°.
故选:D.
【点睛】
本题考查了余角的概念:若两个,角的和为90°,那么这两个角互余.
7、C
【分析】
根据平行线的性质与判定可以判断①②④,根据垂线段最短可以判断③.
【详解】
解:①平面内,垂直于同一条直线的两直线平行,是真命题;
②经过直线外一点,有且只有一条直线与这条直线平行,是真命题;
③垂线段最短,是真命题;
④两直线平行,同旁内角互补,是假命题,
∴真命题有3个,
故选C.
【点睛】
本题主要考查了判断命题真假,熟知相关知识是解题的关键.
8、D
【分析】
根据题意,得=180°-125°,的余角是90°-(180°-125°)=125°-90°,选择即可.
【详解】
∵的补角是125°,
∴=180°-125°,
∴的余角是90°-(180°-125°)=125°-90°=35°,
故选D.
【点睛】
本题考查了补角,余角的计算,正确列出算式是解题的关键.
9、A
【分析】
设这个角为 ,则它的补角为 ,根据“一个角的补角是这个角的4倍”,列出方程,即可求解.
【详解】
解:设这个角为 ,则它的补角为 ,根据题意得:
,
解得: .
故选:A
【点睛】
本题主要考查了补角的性质,一元一次方程的应用,明确题意,准确得到等量关系是解题的关键.
10、B
【分析】
先证明DEBC,根据平行线的性质求解.
【详解】
解:因为∠B=∠ADE=70°
所以DEBC,
所以∠DEC+∠C=180°,所以∠C=80°.
故选:B.
【点睛】
此题主要考查平行线的判定与性质,解题的关键是熟知同位角相等,两直线平行.
二、填空题
1、,
【分析】
由,,可得再证明可得
【详解】
解: ,,
故答案为:
【点睛】
本题考查的是平行线的判定,掌握“在同一平面内,垂直于同一直线的两直线平行”是解本题的关键.
2、109
【分析】
两角互为补角,和为180°,那么计算180°-∠1可求补角.
【详解】
解:设所求角为∠α,
∵∠α+∠1=180°,∠1=71,
∴∠α=180°-71=109°.
故答案为:109
【点睛】
此题考查的是角的性质,两角互余和为90°,互补和为180°.
3、130°
【分析】
根据平行线的性质可得∠EHD=∠EGB=50°,再利用邻补角的性质可求解.
【详解】
解:∵AB∥CD,∠EGB=50°,
∴∠EHD=∠EGB=50°,
∴∠CHG=180°﹣∠EHD=130°.
故答案为:130°.
【点睛】
本题主要考查平行线的性质,邻补角,属于基础题.
4、116°
【分析】
由图示可得,∠1与∠BOC互余,结合已知可求∠BOC,又因为∠2与∠COB互补,即可求出∠2的度数.
【详解】
解:∵,∠AOC=90°,
∴∠BOC=64°,
∵∠2+∠BOC=180°,
∴∠2=116°.
故答案为:116°.
【点睛】
此题考查了余角和补角的知识,属于基础题,关键是掌握互余的两角之和为90°,互补的两角之和为180°.
5、
【分析】
根据图形可得等角的余角相等,进而即可求得.
【详解】
解:如图,
∵将两块三角板的直角顶点重合后叠放在一起,
∴
故答案为:
【点睛】
本题考查了同角的余角相等,读懂图形是解题的关键.
三、解答题
1、53°
【解析】
【分析】
首先根据对顶角相等可得∠BOC=74°,再根据角平分线的性质可得∠COE=∠COB=37°,再利用余角定义可计算出∠COF的度数.
【详解】
解:∵∠AOD=74°,
∴∠BOC=74°,
∵OE是∠COB的平分线,
∴∠COE=∠COB=37°,
∵OE⊥OF,
∴∠EOF=90°,
∴∠COF=90°-37°=53°.
【点睛】
本题考查了角平分线的性质、余角、对顶角的性质,关键是掌握对顶角相等,角平分线把角分成相等的两部分.
2、问题情境:;问题迁移:(1);理由见解析;(2)当点在、两点之间时,;当点在射线上时,.
【解析】
【分析】
问题情境:理由平行于同一条直线的两条直线平行得到 PE∥AB∥CD,通过平行线性质来求∠APC;
(1)过点P作,得到理由平行线的性质得到,,即可得到;
(2)分情况讨论当点P在B、O两点之间,以及点P在射线AM上时,两种情况,然后构造平行线,利用两直线平行内错角相等,通过推理即可得到答案.
【详解】
解:问题情境:
∵AB∥CD,PE∥AB,
∴PE∥AB∥CD,
∴∠A+∠APE=180°,∠C+∠CPE=180°,
∵∠PAB=130°,∠PCD=120°,
∴∠APE=50°,∠CPE=60°,
∴∠APC=∠APE+∠CPE=50°+60°=110°;
(1);
过点P作,
又因为,所以,
则,,
所以;
(2)情况1:如图所示,当点P在B、O两点之间时,
过P作PE∥AD,交ON于E,
∵AD∥BC,
∴AD∥BC∥PE,
∴∠DPE=∠ADP=∠α,∠CPE=∠BCP=∠β,
∴∠CPD=∠DPE-∠CPE=∠α-∠β,
情况2:如图所示,点P在射线AM上时,
过P作PE∥AD,交ON于E,
∵AD∥BC,
∴AD∥BC∥PE,
∴∠DPE=∠ADP=∠α,∠CPE=∠BCP=∠β,
∴∠CPD=∠CPE-∠DPE=∠β-∠α
【点睛】
本题主要考查了借助辅助线构造平行线,利用平行线的性质进行推理,准确分析证明是解题的关键.
3、∠2=115°,∠3=65°,∠4=115°
【解析】
【分析】
根据对顶角相等和邻补角定义可求出各个角.
【详解】
解:∵∠1=65°,∠1=∠3,
∴∠3=65°,
∵∠1=65°,∠1+∠2=180°,
∴∠2=180°-65°=115°,
又∵∠2=∠4,
∴∠4=115°.
【点睛】
本题考核知识点:对顶角,邻补角,解题关键是掌握对顶角,邻补角的定义和性质.
4、(1);(2)平分,理由见解析;(3)秒或秒
【解析】
【分析】
(1)由补角的定义得出∠AOF的度数,由角平分线的定义得出∠FOC的度数,根据余角定义得出的度数;
(2)由得出,由角平分线的定义得出,得即可得出结论;
(3)由余角和补角的定义求得、的度数,然后分当s时,当s时,当s时分别讨论得出结果.
【详解】
解:(1),
,
,
(2) 平分,理由如下:
,
.
OE平分,
即射线OC平分.
(3)∵且,
∴
又∵,
∴,
∴
①当s时
直线绕点O按每秒5°的速度逆时针旋转
解得
②当s时
直线绕点O按每秒5°的速度逆时针旋转
此时无解
③当s时
直线绕点O按每秒5°的速度逆时针旋转
解得35
综上所述,当时, 秒或秒.
【点睛】
本题考查了补角和余角的定义,角平分线的定义,一元一次方程的运用,结合题意学会分类讨论的思想避免漏算答案.
5、两直线平行,内错角相等;角平分线的定义;∠EBC;内错角相等,两直线平行;∠BEF;两直线平行,内错角相等;∠BEF;垂直的定义
【解析】
【分析】
根据平行线的性质得到∠ABC=∠BCD,再根据角平分线的定义进而得到∠EBC=∠BCF,即可判定BE∥CF,根据平行线的性质得出∠BEF=∠F,再根据垂直的定义即可得解.
【详解】
证明:∵AG∥CD(已知),
∴∠ABC=∠BCD(两直线平行,内错角相等),
∵∠ABE=∠FCB(已知),
∴∠ABC﹣∠ABE=∠BCD﹣∠FCB,
即∠EBC=∠FCD,
∵CF平分∠BCD(已知),
∴∠BCF=∠FCD(角平分线的定义),
∴∠EBC=∠BCF(等量代换),
∴BE∥CF(内错角相等,两直线平行),
∴∠BEF=∠F(两直线平行,内错角相等),
∵BE⊥AF(已知),
∴∠BEF=90°(垂直的定义),
∴∠F=90°.
故答案为:两直线平行,内错角相等;角平分线的定义;∠EBC;内错角相等,两直线平行;∠BEF;两直线平行,内错角相等;∠BEF;垂直的定义.
【点睛】
本题主要考查了平行线的性质与判定,角平分线的定义,垂直的定义,熟练掌握相关知识是解题的关键.
相关试卷
这是一份初中数学第七章 观察、猜想与证明综合与测试综合训练题,共19页。试卷主要包含了以下命题是假命题的是,下列命题中,为真命题的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课时训练,共19页。试卷主要包含了下列说法中正确的是,已知,则的余角的补角是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课时训练,共21页。试卷主要包含了若的补角是125°,则的余角是,下列命题是假命题的有,如图,直线AB∥CD,直线AB等内容,欢迎下载使用。