


初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试一课一练
展开这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试一课一练,共21页。试卷主要包含了如图,直线AB等内容,欢迎下载使用。
京改版七年级数学下册第七章观察、猜想与证明专项攻克
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、可以用来说明命题“x2<y2,则x<y”是假命题的反例是( )
A.x=4,y=3 B.x=﹣1,y=2 C.x=﹣2,y=1 D.x=2,y=﹣3
2、下列说法正确的个数是( )
①平方等于本身的数是正数;
②单项式﹣π2x3y2的次数是7;
③近似数7与7.0的精确度不相同;
④因为a>b,所以|a|>|b|;
⑤一个角的补角大于这个角本身.
A.1个 B.2个 C.3个 D.4个
3、已知,则的余角的补角是( )
A. B. C. D.
4、如图,直线AB、CD相交于点O,OE平分∠BOC,若∠BOD:∠BOE=1:2,则∠AOE的大小为( )
A.72° B.98°
C.100° D.108°
5、在证明命题“若,则”是假命题时,下列选项中所举反例不正确的是( )
A. B. C. D.
6、如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=26°,则∠α的度数是( )
A.77° B.64° C.26° D.87°
7、如所示各图中,∠1与∠2是对顶角的是( )
A. B.
C. D.
8、如图,∠AOC和∠BOD都是直角,如果∠DOC=38°,那么∠AOB的度数是( )
A.128° B.142° C.38° D.152°
9、如图,O为直线AB上一点,∠COB=36°12',则∠AOC的度数为( )
A.164°12' B.136°12' C.143°88' D.143°48'
10、若∠α=73°30',则∠α的补角的度数是( )
A.16°30' B.17°30' C.106°30' D.107°30'
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,已知AO⊥OC,OB⊥OD,∠COD=42°,则∠AOB=__________.
2、两个角和的两边互相平行,且角比角的2倍少30°,则这个角是____________度.
3、已知∠1=71°,则∠1的补角等于__________度.
4、如图,点E是BA延长线上一点,下列条件中:①∠1=∠3;②∠5=∠D;③∠2=∠4;④∠B+∠BCD=180°,能判定ABCD的有___.(填序号)
5、如图,已知,且∠1=48°,则∠2=_____,∠3=_____,∠4=_____.
三、解答题(5小题,每小题10分,共计50分)
1、直线,直线分别交、于点、,平分.
(1) 如图1,若平分,则与的位置关系是 .
(2) 如图2,若平分,则与有怎样的位置关系?请说明理由.
(3) 如图3,若平分,则与有怎样的位置关系?请说明理由.
2、如图,已知∠AOB=140°,∠COE与∠EOD互余,OE平分∠AOD.
(1)若∠COE=40°,求∠DOE和∠BOD;
(2)设∠COE=α,∠BOD=β,试探究α与β之间的数量关系.
3、已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.
(1)如果∠2=∠3,那么____________.(____________,____________)
(2)如果∠2=∠5,那么____________.(____________,____________)
(3)如果∠2+∠1=180°,那么____________.(____________,____________)
(4)如果∠5=∠3,那么____________.(____________,____________)
4、如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°,
(1)请判断AB与CD的位置关系并说明理由;
(2)如图2,当∠E=90°且AB与CD的位置关系保持不变,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE与∠MCD是否存在确定的数量关系?并说明理由;
(3)如图3,P为线段AC上一定点,点Q为直线CD上一动点且AB与CD的位置关系保持不变,当点Q在射线CD上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?猜想结论并说明理由.
5、完成下列证明:已知,,垂足分别为、,且,求证.
证明:,(已知),
( )
( )
( )
又(已知)
( )
( )
---------参考答案-----------
一、单选题
1、D
【分析】
根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.
【详解】
解:当x=2,y=﹣3时,x2<y2,但x>y,
故选:D.
【点睛】
此题考查的是命题与定理,要说明数学命题的错误,只需举出一个反例即可这是数学中常用的一种方法.
2、A
【分析】
根据平方等于本身的数是0和1,即可判断①;根据单项式次数的定义:表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式,单项式中数字因数叫做这个单项式的系数,所有字母的指数之和叫做单项式的次数,即可判断②;根据近似数的精确度可以判断③;根据绝对值的定义可以判断④;根据补角的定义:如果两个角的和为180度,那么这两个角互补即可判断⑤.
【详解】
解:①平方等于本身的数是1和0,故此说法错误;
②单项式﹣π2x3y2的次数是5,故此说法错误;
③近似数7精确到个位,近似数7.0精确到十分位,两者的精确度不相同,故此说法正确;
④因为a>b,不一定有 |a|>|b|,如1>-2,但是|1|<|-2|,故此说法错误;
⑤一个角的补角可能大于等于或小于这个角本身,故此说法错误;
故选A.
【点睛】
本题主要考查了有理数的乘方,绝对值,单项式次数,补角和近似数,解题的关键在于能够熟练掌握相关知识进行求解.
3、A
【分析】
根据余角和补角定义解答.
【详解】
解:的余角的补角是,
故选:A .
【点睛】
此题考查余角和补角的定义:和为90度的两个角互为余角,和为180度的两个角是互为补角.
4、D
【分析】
根据角平分线的定义得到∠COE=∠BOE,根据邻补角的定义列出方程,解方程求出∠BOD,根据对顶角相等求出∠AOC,结合图形计算,得到答案.
【详解】
解:设∠BOD=x,
∵∠BOD:∠BOE=1:2,
∴∠BOE=2x,
∵OE平分∠BOC,
∴∠COE=∠BOE=2x,
∴x+2x+2x=180°,
解得,x=36°,即∠BOD=36°,∠COE=72°,
∴∠AOC=∠BOD=36°,
∴∠AOE=∠COE+∠AOC=108°,
故选:D.
【点睛】
本题考查的是对顶角、邻补角的概念,掌握对顶角相等、邻补角之和为180°是解题的关键.
5、A
【分析】
所谓举反例是指满足命题的条件但不满足命题的结论,由此可判断.
【详解】
显然A选项既满足命题的条件也满足命题的结论,故不是举反例,其它三个选项满足命题的条件,但不满足命题的结论,所以都是举反例;
故选:A
【点睛】
本题考查了命题的真假,说明一个命题是假命题要举反例.掌握举反例的含义是关键.
6、A
【分析】
本题首先根据∠BGD′=26°,可以得出∠AEG=∠BGD′=26°,由折叠可知∠α=∠FED,由此即可求出∠α=77°.
【详解】
解:由图可知: AD∥BC
∴∠AEG=∠BGD′=26°,
即:∠GED=154°,
由折叠可知: ∠α=∠FED,
∴∠α==77°
故选:A.
【点睛】
本题主要考察的是根据平行得性质进行角度的转化.
7、B
【分析】
根据对顶角的定义进行判断:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角.
【详解】
解:A.∠1与∠2没有公共顶点,不是对顶角;
B.∠1与∠2有公共顶点,并且两边互为反向延长线,是对顶角;
C.∠1与∠2虽然有公共顶点,但两个角的两边不互为反向延长线,不是对顶角;
D.∠1与∠2虽然有公共顶点,但两个角的两边不互为反向延长线,不是对顶角.
故选:B.
【点睛】
本题主要考查了对顶角的定义,熟记对顶角的定义是解题的关键.
8、B
【分析】
首先根据题意求出,然后根据求解即可.
【详解】
解:∵∠AOC和∠BOD都是直角,∠DOC=38°,
∴,
∴.
故选:B.
【点睛】
此题考查了角度之间的和差运算,直角的性质,解题的关键是根据直角的性质求出的度数.
9、D
【分析】
根据邻补角及角度的运算可直接进行求解.
【详解】
解:由图可知:∠AOC+∠BOC=180°,
∵∠COB=36°12',
∴∠AOC=180°-∠BOC=143°48',
故选D.
【点睛】
本题主要考查邻补角及角度的运算,熟练掌握邻补角及角度的运算是解题的关键.
10、C
【分析】
根据补角的定义可知,用180°﹣73°30'即可,
【详解】
解:∠α的补角的度数是180°﹣73°30'=106°30′.
故选:C.
【点睛】
本题考查角的度量及补角的定义,解题关键是掌握补角的定义.
二、填空题
1、138°
【分析】
根据垂直的定义得到∠AOC=∠DOB=90°,由互余关系得到∠BOC=90°-∠COD=90°-42°=48°,即可求出∠AOB.
【详解】
解:∵AO⊥OC,OB⊥OD,
∴∠AOC=∠DOB=90°,
又∵∠COD=42°,
∴∠BOC=90°-∠COD=90°-42°=48°,
∴∠AOB=∠AOC+∠BOC=90°+48°=138°.
【点睛】
本题考查了余角的概念:若两个角的和为90°,那么这两个角互余.
2、或
【分析】
设为∠1和为∠2,根据图形可证得两角相等或互补,再利用方程建立等量关系求解即可.
【详解】
解:设的度数为,则的度数为,
如图1,和互相平行,可得:∠2=∠3,
同理:∠1=∠3,
∴∠2=∠1,
∴当两角相等时:,
解得:,
如图2,和互相平行,可得:∠2+∠3=,
而和互相平行,得∠1=∠3,
∴∠2+∠1=,
∴当两角互补时:,
解得:,
,
故填:或.
【点睛】
本题考查平行线的性质和方程的应用,分类讨论思想是关键.
3、109
【分析】
两角互为补角,和为180°,那么计算180°-∠1可求补角.
【详解】
解:设所求角为∠α,
∵∠α+∠1=180°,∠1=71,
∴∠α=180°-71=109°.
故答案为:109
【点睛】
此题考查的是角的性质,两角互余和为90°,互补和为180°.
4、②③④
【分析】
根据平行线的判定方法分别判定得出答案.
【详解】
解:①中,∵∠1=∠3,∴AD//BC(内错角相等,两直线平行),故此选项不符合题意;
②中,∵∠5=∠D,∴AB//CD(内错角角相等,两直线平行),故此选项符合题意;
③中,∵∠2=∠4,∴AB//CD(内错角角相等,两直线平行)),故此选项符合题意;
④中,∠B+∠BCD=180°,∴AB//CD (同旁内角互补,两直线平行),故此选项符合题意;
故答案为:②③④.
【点睛】
此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.
5、48° 132° 48°
【分析】
根据两直线平行内错角相等可求出∠2,根据两直线平行,同位角相等可求出∠4,同旁内角互补可求出∠3.
【详解】
解:∵ //,∠1=48°,
∴∠2=∠1=48°,
∵ //,∠1=48°,
∴∠4=∠1=48°,
∵ //,
∴∠3+∠4=180°
∴∠3=180°-∠4=180°-48°=132°
故答案为:48°;132°;48°
【点睛】
此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.
三、解答题
1、(1);(2),理由见解析;(3),理由见解析
【解析】
【分析】
(1)根据两直线平行,同位角相等可得,根据角平分线的意义可得,进而可得,即可判断;
(2)根据两直线平行,内错角相等,角平分线的意义可得,即可判断;
(3)设交于点,过点作根据两直线平行,同旁内角互补,角平分线的意义,可得,进而可得,进而判断.
【详解】
(1)如题图1,
平分,平分.
;
(2)如题图2,
平分,平分.
;
(3)如图,设交于点,过点作
,
平分,平分.
;
【点睛】
本题考查了平行线的性质与判定,角平分线的意义,掌握平行线的性质与判定是解题的关键.
2、(1),;(2).
【解析】
【分析】
(1)根据互余的性质求出,根据角平分线的性质求出,结合图形计算即可;
(2)根据互余的性质用表示,根据角平分线的性质求出,结合图形列式计算即可.
【详解】
解:
(1)∵与互余,,
∴,
∵OE平分,
∴,
∴,
∴,;
(2)∵,且与互余,
∴,
∵OE平分,
∴,
∴,
解得:.
【点睛】
本题考查了余角及角平分线的性质,角的计算,理解两个性质并准确识图,理清图中各角度之间的关系是解题的关键.
3、(1)EFDG,内错角相等,两直线平行;(2)ABEF,同位角相等,两直线平行;(3)ADBC,同旁内角互补,两直线平行;(4)ABDG,内错角相等,两直线平行;
【解析】
【分析】
(1)根据两直线被第3条直线所截,确定∠2,∠3的位置为内错角,然后再判断直线平行即可;
(2)根据两直线被第3条直线所截,确定∠2,∠5的位置为同位角,然后再判断直线平行即可;
(3)根据两直线被第3条直线所截,确定∠2,∠1的位置为同旁内角,然后再判断直线平行即可;
(4)根据两直线被第3条直线所截,确定∠5,∠3的位置为内错角,然后再判断直线平行即可.
【详解】
(1)如果∠2=∠3,那么EF∥DC.(内错角相等,两直线平行);
(2)如果∠2=∠5,那么EF∥AB.(同位角相等,两直线平行);
(3)如果∠2+∠1=180°,那么AD∥BC.(同旁内角互补,两直线平行);
(4)如果∠5=∠3,那么AB∥CD.(内错角相等,两直线平行.
故答案为:(1)EFDG,内错角相等,两直线平行;(2)ABEF,同位角相等,两直线平行;(3)ADBC,同旁内角互补,两直线平行;(4)ABDG,内错角相等,两直线平行.
【点睛】
本题考查平行线的判定,角的位置关系识别,掌握三线八角的两角位置关系,直线平行的判定定理是解题关键.
4、(1)平行,理由见解析;(2)∠BAE+∠MCD=90°,理由见解析;(3)∠BAC=∠PQC+∠QPC,理由见解析.
【解析】
【分析】
(1)先根据CE平分∠ACD,AE平分∠BAC可得∠BAC=2∠EAC,∠ACD=2∠ACE,再由∠EAC+∠ACE=90°可知∠BAC+∠ACD=180,根据平行线的判定定理即可得出结论;
(2)如图,过E作EF∥AB,由AB//CD可得EF∥AB∥CD,根据平行线的性质可得∠BAE=∠AEF,∠FEC=∠DCE,可得∠BAE+∠ECD=90°,再由∠MCE=∠ECD即可得出结论;
(3)如图,过点C作CM//PQ,可得∠PQC=∠MCN,∠QPC=∠PCM,根据AB∥CD可知∠BAC+∠ACD=180°,根据∠PCQ+∠PCM+∠MCN=180°,可得∠QPC+∠PQC+∠PCQ=180°,即可得出∠BAC=∠PQC+∠QPC.
【详解】
(1)∵CE平分∠ACD,AE平分∠BAC,
∴∠BAC=2∠EAC,∠ACD=2∠ACE,
∵∠EAC+∠ACE=90°,
∴∠BAC+∠ACD=180°,
∴AB∥CD
(2)∠BAE+∠MCD=90°;理由如下:
如图,过E作EF∥AB,
∵AB∥CD,
∴EF∥AB∥CD,
∴∠BAE=∠AEF,∠FEC=∠DCE,
∵∠AEC=∠AEF+∠FEC=90°,
∴∠BAE+∠ECD=90°,
∵∠MCE=∠ECD=∠MCD,
∴∠BAE+∠MCD=90°.
(3)如图,过点C作CM//PQ,
∴∠PQC=∠MCN,∠QPC=∠PCM,
∵AB∥CD,
∴∠BAC+∠ACD=180°,
∵∠PCQ+∠PCM+∠MCN=180°,
∴∠QPC+∠PQC+∠PCQ=180°,
∴∠BAC=∠PQC+∠QPC.
【点睛】
本题考查平行线的判定与性质及角平分线的定义,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.
5、见详解
【解析】
【分析】
根据垂直的定义及平行线的性质与判定可直接进行求解.
【详解】
证明:,(已知),
(垂直的定义)
(同位角相等,两直线平行)
(两直线平行,同位角相等)
又(已知)
(等量代换)
(内错角相等,两直线平行).
【点睛】
本题主要考查垂直的定义及平行线的性质与判定,熟练掌握垂直的定义及平行线的性质与判定是解题的关键.
相关试卷
这是一份初中数学北京课改版七年级下册第七章 观察、猜想与证明综合与测试课后作业题,共20页。试卷主要包含了如图,C,已知,则的余角的补角是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第七章 观察、猜想与证明综合与测试同步达标检测题,共18页。试卷主要包含了下列说法中正确的是等内容,欢迎下载使用。
这是一份七年级下册第七章 观察、猜想与证明综合与测试课时训练,共27页。试卷主要包含了下列命题中,真命题是,下列语句中,错误的个数是,下列命题中,是真命题的是,下列说法正确的个数是等内容,欢迎下载使用。