2021学年第八章 因式分解综合与测试课时练习
展开
这是一份2021学年第八章 因式分解综合与测试课时练习,共17页。试卷主要包含了计算的值是,下列各式中,正确的因式分解是,把分解因式的结果是.等内容,欢迎下载使用。
京改版七年级数学下册第八章因式分解专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知,,那么的值为( )A.3 B.6 C. D.2、下列从左边到右边的变形中,是因式分解的是( )A. B.C. D.3、下列四个式子从左到右的变形是因式分解的为( )A.(x﹣y)(﹣x﹣y)=y2﹣x2B.a2+2ab+b2﹣1=(a+b)2﹣1C.x4﹣81y4=(x2+9y2)(x+3y)(x﹣3y)D.(a2+2a)2﹣8(a2+2a)+12=(a2+2a)(a2+2a﹣8)+124、小东是一位密码爱好者,在他的密码手册中有这样一条信息:、、、、、依次对应下列六个字:科、爱、勤、我、理、学,现将因式分解,其结果呈现的密码信息可能是( ).A.勤学 B.爱科学 C.我爱理科 D.我爱科学5、下列各式中,从左到右的变形是因式分解的是( )A. B.C. D.6、计算的值是( )A. B. C. D.27、下列各式中,正确的因式分解是( )A.B.C.D.8、把分解因式的结果是( ).A. B.C. D.9、下列从左到右的变形,是因式分解的是( )A.(x+4)(x﹣4)=x2﹣16 B.x2﹣x﹣6=(x+3)(x﹣2)C.x2+1=x(x+) D.a2b+ab2=ab(a+b)10、把代数式分解因式,正确的结果是( )A.-ab(ab+3b) B.-ab(ab+3b-1)C.-ab(ab-3b+1) D.-ab(ab-b-1)第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、分解因式:=____________.2、分解因式:________.3、因式分解:________.4、分解因式:a3﹣2a2b+ab2=___.5、如果,,那么代数式的值是________.三、解答题(5小题,每小题10分,共计50分)1、因式分解:(1)a2﹣b2+2a+2b;(2)3m(2x﹣y)2﹣3mn2;(3)16﹣8(x﹣y)+(x﹣y)2.2、把下列多项式分解因式:(1)(2)3、请将下列各式因式分解.(1)3a(x﹣y)﹣5b(y﹣x); (2)x2(a﹣b)2﹣y2(b﹣a)2.(3)2xmyn﹣1﹣4xm﹣1yn(m,n均为大于1的整数).4、(1)按下表已填的完成表中的空白处代数式的值: ,1 , 46, (2)比较两代数式计算结果,请写出你发现的与有什么关系?(3)利用你发现的结论,求:的值.5、阅读下列因式分解的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]=(1+x)2(1+x)=(1+x)3(1)上述分解因式的方法是 ,共应用了 次.(2)若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2021,则需应用上述方法 次,结果是 .(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数)结果是 . ---------参考答案-----------一、单选题1、D【解析】【分析】根据完全平方公式求出,再把原式因式分解后可代入求值.【详解】解:因为,,所以,所以故选:D【点睛】考核知识点:因式分解的应用.灵活应用完全平方公式进行变形是解题的关键.2、A【解析】【分析】根据因式分解的定义逐个判断即可.【详解】解:A.是因式分解,故本选项符合题意;B.等式的左边不是多项式,所以不是因式分解,故本选项不合题意; C.等式的右边不是几个整式的积的形式,所以不是因式分解,故本选项不合题意;D.等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;故选:A.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.3、C【解析】【分析】根据因式分解的定义判断即可.把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.【详解】解:A选项,B,D选项,等号右边都不是积的形式,所以不是因式分解,不符合题意;C选项,符合因式分解的定义,符合题意;故选:C.【点睛】本题考查了因式分解的定义,掌握因式分解的定义是解题的关键.4、C【解析】【分析】利用平方差公式,将多项式进行因式分解,即可求解.【详解】解:∵、、、依次对应的字为:科、爱、我、理,∴其结果呈现的密码信息可能是我爱理科.故选:C【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解的方法是解题的关键.5、C【解析】【分析】根据因式分解的定义判断即可.【详解】解:因式分解即把一个多项式化成几个整式的积的形式.A. ,不是几个整式的积的形式,A选项不是因式分解;B. ,不是几个整式的积的形式,B选项不是因式分解C. ,符合因式分解的定义,C是因式分解. D. ,不是几个整式的积的形式,D选项不是因式分解;故选C【点睛】本题考查了因式分解的定义,把一个多项式化成几个整式的积的形式的变形叫因式分解,等号的左边是一个多项式,右边是几个整式的积,正确理解因式分解的定义是解题的关键.6、B【解析】【分析】直接找出公因式进而提取公因式,进行分解因式即可.【详解】解:.故选:B【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.7、B【解析】【分析】直接利用公式法以及提取公因式法分解因式,进而判断得出答案.【详解】解:.,故此选项不合题意;.,故此选项符合题意;.,故此选项不合题意;.,故此选项不合题意;故选:.【点睛】本题考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.8、B【解析】【分析】先用平方差公式分解因式,在提取公因式即可得出结果.【详解】解:a2+2a-b2-2b,=(a2-b2)+(2a-2b),=(a+b)(a-b)+2(a-b),=(a-b)(a+b+2),故选:B.【点睛】此题主要考查了提取公因式法和公式法分解因式,正确找出公因式是解题关键.9、D【解析】【分析】分解因式就是把一个多项式化为几个整式的积的形式,因此,要确定从左到右的变形中是否为因式分解或者分解因式是否正确,逐项进行判断即可.【详解】A、结果不是积的形式,因而不是因式分解;B、,因式分解错误,故错误;C、 不是整式,因而不是因式分解;D、满足因式分解的定义且因式分解正确;故选:D.【点睛】题目主要考查的是因式分解的概念及方法,熟练掌握理解因式分解的定义及方法是解题关键.10、B【解析】【分析】根据提公因式法因式分解,先提出,即可求得答案【详解】解:故选B【点睛】本题考查了提公因式法因式分解,掌握提公因式法因式分解是解题的关键.二、填空题1、3(x-1)2【解析】【分析】直接提取公因式3,再利用完全平方公式分解因式得出答案.【详解】解:3x2-6x+3=3(x2-2x+1)=3(x-1)2.故答案为:3(x-1)2.【点睛】本题主要考查了提取公因式法以及公式法分解因式,正确运用公式法分解因式是解题关键.2、【解析】【分析】原式提取公因式,再利用平方差公式分解即可.【详解】解:原式=,=故答案为:.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.3、m(m+1)(m﹣1).【解析】【分析】原式提取m,再利用平方差公式分解即可.【详解】解:原式=m(m2﹣12)=m(m+1)(m﹣1).故答案为:m(m+1)(m﹣1).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.4、【解析】【分析】先提取公因式a,再利用完全平方公式因式分解.【详解】解:,故答案为:.【点睛】本题考查综合利用提公因式法和公式法因式分解.一般有公因式先提取公因式,再看是否能用公式法因式分解.5、-64【解析】【分析】先提公因式再利用平方差公式分解因式,然后将已知整体代入求值,即可.【详解】解:==∵,,∴原式=2×(-4)×8=-64,故答案是:-64.【点睛】本题主要考查代数式求值,掌握平方差公式,进行分解因式,是解题的关键.三、解答题1、(1);(2);(3)【解析】【分析】(1)先分组分解因式,然后提取公因式分解因式即可得到答案;(2)先提取公因式,然后利用平方差公式求解即可;(3)直接利用完全平方公式分解因式即可.【详解】解:(1);(2);(3).【点睛】本题主要考查了因式分解,解题的关键在于能够熟练掌握因式分解的方法.2、(1);(2)【解析】【分析】(1)先提取公因式3x,然后利用平方差公式分解因式即可;(2)先提取公因式-5a,然后利用完全平方公式分解因式即可.【详解】(1) ; (2).【点睛】本题主要考查了分解因式,解题的关键在于能够熟练掌握分解因式的方法.3、(1)(x﹣y)(3a+5b);(2)(a﹣b)2(x -y)(x +y);(3).【解析】【分析】(1)首先将3a(x﹣y)﹣5b(y﹣x)变形为3a(x﹣y)+5b(x﹣y),然后利用提公因式法分解因式即可;(2)首先将x2(a﹣b)2﹣y2(b﹣a)2变形为x2(a﹣b)2﹣y2(a﹣b)2,然后利用提公因式法分解因式即可;(3)利用提公因式法分解因式即可求解;【详解】解:(1)3a(x﹣y)﹣5b(y﹣x)=3a(x﹣y)+5b(x﹣y)=(x﹣y)(3a+5b)(2)x2(a﹣b)2﹣y2(b﹣a)2=x2(a﹣b)2﹣y2(a﹣b)2=(a﹣b)2(x2﹣y2)=(a﹣b)2(x -y)(x +y)(3)2xmyn﹣1﹣4xm﹣1yn=【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.4、(1)见解析;(2);(3)1【解析】【分析】(1)把每组的值分别代入与进行计算,再填表即可;(2)观察计算结果,再归纳出结论即可;(3)利用结论可得 再代入进行简便运算即可.【详解】解:(1)填表如下: ,11,1616,99 (2)观察上表的计算结果归纳可得:(3)===1【点睛】本题考查的是代数式的求值,运算规律的探究,完全平方公式的应用,熟练的利用完全平方公式进行简便运算是解本题的关键.5、(1)提公因式法; 2;(2)2021;(x+1)2022;(3)(1+x)n+1.【解析】【分析】(1)直接利用已知解题方法分析得出答案;(2)结合(1)中解题方法得出答案;(3)结合(1)中解题方法得出答案.【详解】解:(1)上述分解因式的方法是提公因式法,共应用了2次;故答案为:提公因式法; 2;(2)若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2021,则需应用上述方法2021次,结果是(x+1)2022;故答案为:2021;(x+1)2022;(3)1+x+x(x+1)+x(x+1)2+…+x(x+1)n=(1+x)n+1.故答案为:(1+x)n+1.【点睛】此题主要考查了提取公因式法以及数字变换规律,正确得出次数变化规律是解题关键.
相关试卷
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试课堂检测,共15页。试卷主要包含了下列分解因式结果正确的是,下列各因式分解正确的是等内容,欢迎下载使用。
这是一份数学七年级下册第八章 因式分解综合与测试课后复习题,共17页。试卷主要包含了把分解因式的结果是.等内容,欢迎下载使用。
这是一份数学北京课改版第八章 因式分解综合与测试习题,共17页。试卷主要包含了因式分解等内容,欢迎下载使用。