北京课改版七年级下册第八章 因式分解综合与测试一课一练
展开
这是一份北京课改版七年级下册第八章 因式分解综合与测试一课一练,共16页。试卷主要包含了下列因式分解正确的是等内容,欢迎下载使用。
京改版七年级数学下册第八章因式分解定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列多项式能使用平方差公式进行因式分解的是( )A. B. C. D.2、下列因式分解正确的是( )A. B.C. D.3、下列从左到右的变形,是分解因式的是( )A.xy2(x﹣1)=x2y2﹣xy2 B.2a2+4a=2a(a+2)C.(a+3)(a﹣3)=a2﹣9 D.x2+x﹣5=(x﹣2)(x+3)+14、下列四个式子从左到右的变形是因式分解的为( )A.(x﹣y)(﹣x﹣y)=y2﹣x2B.a2+2ab+b2﹣1=(a+b)2﹣1C.x4﹣81y4=(x2+9y2)(x+3y)(x﹣3y)D.(a2+2a)2﹣8(a2+2a)+12=(a2+2a)(a2+2a﹣8)+125、下列因式分解正确的是( )A. B.C. D.6、已知a+b=2,a-b=3,则等于( )A.5 B.6 C.1 D.7、n为正整数,若2an﹣1﹣4an+1的公因式是M,则M等于( )A.an﹣1 B.2an C.2an﹣1 D.2an+18、下列因式分解正确的是( )A. B.C. D.9、下列各式能用平方差公式进行分解因式的是( )A.x2-1 B.x2+2x-1 C.x2+x+1 D.x2+4x+410、下列各式中,由左向右的变形是分解因式的是( )A. B.C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知a2+a-1=0,则a3+2a2+2021=________.2、分解因式:3y2﹣12=______________.3、把多项式ax2-2axy+ay2分解因式的结果是____.4、分解因式:2x2-4x=_____.5、分解因式:______.三、解答题(5小题,每小题10分,共计50分)1、因式分解(1)(2)(x-1)(x-3)-82、将下列各式分解因式:(1); (2)3、把下列各式分解因式:(1)6ab3-24a3b;(2)x4-8x2+16;(3)a2(x+y)-b2(y+x)(4)4m2n2-(m2+n2)24、5、因式分解:(1)3a2﹣6ab+3b2 (2) (x+1)(x+2)(x+3)(x+4)+1 ---------参考答案-----------一、单选题1、B【解析】【分析】根据平方差公式的结构特点,两个平方项,并且符号相反,对各选项分析判断即可求解.【详解】解:A、,不能进行因式分解,不符合题意;B、﹣m2+1=1﹣m2=(1+m)(1﹣m),可以使用平方差公式进行因式分解,符合题意;C、,不能使用平方差公式进行因式分解,不符合题意;D、,不能进行因式分解,不符合题意;故选:B.【点睛】本题考查平方差公式进行因式分解,熟记平方差公式的结构特点是求解的关键.平方差公式:a2﹣b2=(a+b)(a﹣b).2、D【解析】【分析】各项分解得到结果,即可作出判断.【详解】解:A、,不符合题意;B、,不符合题意;C、,不符合题意;D、因式分解正确,符合题意,故选:D.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.3、B【解析】【分析】根据因式分解的意义对各选项进行逐一分析即可.【详解】解:、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意;、符合因式分解的意义,是因式分解,故本选项正确,符合题意;、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意;、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意.故选:B.【点睛】本题考查的是因式分解的意义,解题的关键是把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.4、C【解析】【分析】根据因式分解的定义判断即可.把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.【详解】解:A选项,B,D选项,等号右边都不是积的形式,所以不是因式分解,不符合题意;C选项,符合因式分解的定义,符合题意;故选:C.【点睛】本题考查了因式分解的定义,掌握因式分解的定义是解题的关键.5、A【解析】【分析】根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做因式分解,进行判断即可.【详解】解:A、,选项说法正确,符合题意;B、,选项说法错误,不符合题意;C、是整式乘法运算,不是因式分解,选项说法错误,不符合题意;D、,选项说法错误,不符合题意;故选A.【点睛】本题考查了因式分解,解题的关键是掌握因式分解的定义以及分解的正确性.6、B【解析】【分析】根据平方差公式因式分解即可求解【详解】∵a+b=2,a-b=3,∴故选B【点睛】本题考查了根据平方差公式因式分解,掌握平方差公式是解题的关键.7、C【解析】【分析】根据提取公因式的方法计算即可;【详解】原式,∴2an﹣1﹣4an+1的公因式是,即;故选C.【点睛】本题主要考查了利用提取公因式法因式分解,准确分析计算是解题的关键.8、C【解析】【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据因式分解的定义和方法即可求解.【详解】解:A、,错误,故该选项不符合题意;B、,错误,故该选项不符合题意;C、,正确,故该选项符合题意;D、,不能进行因式分解,故该选项不符合题意;故选:C.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.9、A【解析】【分析】两个数的和与这两个数的差的积等于这两个数的平方差,用字母表示为,根据平方差公式的构成特点,逐个判断得结论.【详解】A.能变形为x2﹣12,符合平方差公式的特点,能用平方差公式分解因式;B.多项式含有三项,不能用平方差公式分解因式;C.多项式含有三项,不能用平方差公式分解因式;D.多项式含有三项,不能用平方差公式分解因式.故选:A.【点睛】本题考查了运用平方差公式进行因式分解,熟记平方差公式的结构特点是求解的关键.10、B【解析】【分析】判断一个式子是否是因式分解的条件是①等式的左边是一个多项式,②等式的右边是几个整式的积,③左、右两边相等,根据以上条件进行判断即可.【详解】解:A、,不是因式分解;故A错误;B、,是因式分解;故B正确;C、,故C错误;D、,不是因式分解,故D错误;故选:B.【点睛】本题考查了因式分解的意义,把多项式转化成几个整式积的形式是解题关键.二、填空题1、2022【解析】【分析】将已知条件变形为a2=1-a、a2+a=1,然后将代数式a3+2a2+2021进一步变形进行求解.【详解】解:∵a2+a-1=0,∴a2=1-a、a2+a=1,∴a3+2a2+2021,=a•a2+2(1-a)+2021,=a(1-a)+2-2a+2021,=a-a2-2a+2023,=-a2-a+2023,=-(a2+a)+2023,=-1+2023=2022.故答案为:2022【点睛】本题考查了求代数式的值,是一道涉及因式分解的计算题,考查了拆项法分 解因式的运用,提公因式法的运用.2、【解析】【分析】先提取公因式3,然后再根据平方差公式进行因式分解即可.【详解】解:;故答案为.【点睛】本题主要考查因式分解,熟练掌握因式分解是解题的关键.3、【解析】【分析】先提公因式,然后根据完全平方公式因式分解即可.【详解】解:原式==,故答案为:【点睛】本题考查了提公因式法和公式法因式分解,熟练掌握完全平方公式的结构特点是解本题的关键.4、##【解析】【分析】根据提公因式法因式分解即可【详解】解:2x2-4x=故答案为:【点睛】本题考查了提公因式法因式分解,掌握因式分解的方法是解题的关键.5、【解析】【分析】根据提取公因式法,提取公因式即可求解.【详解】解:,故答案为:.【点睛】本题考查了因式分解,解题的关键是熟练掌握提取公因式法.三、解答题1、(1)x2(a2-2y)2;(2)(x-5)(x+1)【解析】【分析】(1)先提取x2,再根据完全平方公式即可求解;(2)先化简,再根据十字相乘法即可求解.【详解】解:(1)=x2(a4-4a2y+4y2)=x2(a2-2y)2(2)(x-1)(x-3)-8=x2-4x+3-8=x2-4x-5=(x-5)(x+1).【点睛】此题主要考查因式分解,解题的关键是熟知因式分解的方法.2、(1);(2)【解析】【分析】(1)首先提取公因式-6,再利用完全平方公式继续分解即可;(2)首先提取公因式3ab,再利用平方差进行分解即可.【详解】解:(1)==;(2)= =.【点睛】本题主要考查了提公因式法、完全平方公式和平方差公式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果有公因式先提取公因式,再考虑运用公式来分解.3、(1)6ab(b+2a)(b-2a);(2)(x-2)2(x+2)2;(3)(x+y)(a+b)(a-b);(4)-(m+n)2(m-n)2【解析】【分析】(1)先提取公因式,再按照平方差公式分解即可;(2)先按照完全平方公式分解,再按照平方差公式分解即可;(3)先提取公因式,再按照平方差公式分解即可;(4)先按照平方差公式分解因式,再添负号,添括号,按照完全平方公式分解即可.【详解】解:(1)原式=6ab(b2-4a2)=6ab(b+2a)(b-2a).(2)原式=(x2-4)2=(x-2)2(x+2)2.(3)原式=(x+y)(a2-b2)=(x+y)(a+b)(a-b).(4)原式=(2mn+m2+n2)(2mn-m2-n2)=-(m+n)2(m-n)2.【点睛】本题考查的是综合提取公因式,公式法分解因式,易错点是一定要分解彻底.4、【解析】【分析】根据平方差公式求解即可.【详解】解:【点睛】此题考查了平方差公式的应用,涉及了整式加减运算,解题的关键是掌握平方差公式,利用整体思想进行求解.5、(1);(2).【解析】【分析】(1)先提取公因式,然后利用公式法进行因式分解即可;(2)先利用乘法交换律进行变换,然后根据多项式乘以多项式分两组计算,将看作一个整体,继续进行多项式乘法运算,最后运用公式法进行因式分解即可.【详解】解:(1),,;(2),,,,.【点睛】题目主要考查因式分解的方法提公因式法和公式法的综合运用,熟练掌握因式分解的方法是解题关键.
相关试卷
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试课时作业,共17页。试卷主要包含了下列因式分解正确的是,下列因式分解正确的是.等内容,欢迎下载使用。
这是一份初中数学第八章 因式分解综合与测试课后复习题,共15页。试卷主要包含了下列分解因式正确的是,下列分解因式结果正确的是,下列因式分解正确的是,已知的值为5,那么代数式的值是等内容,欢迎下载使用。
这是一份北京课改版七年级下册第八章 因式分解综合与测试课时练习,共16页。试卷主要包含了下列因式分解正确的是,能利用进行因式分解的是,下列分解因式结果正确的是等内容,欢迎下载使用。