北京课改版七年级下册第八章 因式分解综合与测试课后作业题
展开
这是一份北京课改版七年级下册第八章 因式分解综合与测试课后作业题,共16页。
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列各式从左到右的变形中,是因式分解的为( )
A.a(x+y)=ax+ayB.6x3y2=2x2y•3xy
C.t2﹣16+3t=(t+4)(t﹣4)+3tD.y2﹣6y+9=(y﹣3)2
2、已知a2-2a-1=0,则a4-2a3-2a+1等于( )
A.0B.1C.2D.3
3、把分解因式的结果是( ).
A.B.
C.D.
4、下列多项式中能用平方差公式分解因式的是( )
A.B.C.D.
5、下列各式能用公式法因式分解的是( ).
A.B.C.D.
6、下列各式由左边到右边的变形中,是因式分解的为( )
A.a(x+y)=ax+ayB.10x2﹣5x=5x(2x﹣1)
C.x2﹣4x+4=(x﹣4)2D.x2﹣16+3x=(x+4)(x﹣4)+3x
7、n为正整数,若2an﹣1﹣4an+1的公因式是M,则M等于( )
A.an﹣1B.2anC.2an﹣1D.2an+1
8、下列各式中,由左向右的变形是分解因式的是( )
A.B.
C.D.
9、下列从左到右的变形,是分解因式的是( )
A.xy2(x﹣1)=x2y2﹣xy2B.2a2+4a=2a(a+2)
C.(a+3)(a﹣3)=a2﹣9D.x2+x﹣5=(x﹣2)(x+3)+1
10、不论x,y取何实数,代数式x2-4x+y2-6y+13总是( )
A.非负数B.正数C.负数D.非正数
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、因式分解:__.
2、分解因式:__.
3、观察下列因式分解中的规律:①;②;③;④;利用上述系数特点分解因式__________.
4、把多项式分解因式结果是______.
5、因式分解:______.
三、解答题(5小题,每小题10分,共计50分)
1、把下列各式因式分解:
(1)
(2).
2、分解因式:4xy2﹣4x2y﹣y3.
3、阅读下列因式分解的过程,再回答所提出的问题:
1+x+x(x+1)+x(x+1)2
=(1+x)[1+x+x(x+1)]
=(1+x)2(1+x)
=(1+x)3
(1)上述分解因式的方法是 ,共应用了 次.
(2)若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2021,则需应用上述方法 次,结果是 .
(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数)结果是 .
4、因式分解:
①3x-12x3;
②-2a3+12a2-18a
5、分解因式:
(1)
(2)
---------参考答案-----------
一、单选题
1、D
【解析】
【分析】
根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.
【详解】
解:A.a(x+y)=ax+ay是整式的计算,故错误;
B.6x3y2=2x2y•3xy,不是因式分解,故错误;
C.t2﹣16+3t=(t+4)(t﹣4)+3t,含有加法,故错误;
D.y2﹣6y+9=(y﹣3)2是因式分解,正确;
故选:D.
【点睛】
本题考查了因式分解的意义,注意:把一个多项式转化成几个整式积的形式叫做因式分解.
2、C
【解析】
【分析】
由a2﹣2a﹣1=0,得出a2﹣2a=1,逐步分解代入求得答案即可.
【详解】
解:∵a2﹣2a﹣1=0,
∴a2﹣2a=1,
∴a4﹣2a3﹣2a+1
=a2(a2﹣2a)﹣2a+1
=a2﹣2a+1
=1+1
=2.
故选:C.
【点睛】
此题考查因式分解的实际运用,分组分解和整体代入是解决问题的关键.
3、B
【解析】
【分析】
先用平方差公式分解因式,在提取公因式即可得出结果.
【详解】
解:a2+2a-b2-2b,
=(a2-b2)+(2a-2b),
=(a+b)(a-b)+2(a-b),
=(a-b)(a+b+2),
故选:B.
【点睛】
此题主要考查了提取公因式法和公式法分解因式,正确找出公因式是解题关键.
4、A
【解析】
【分析】
利用平方差公式逐项进行判断,即可求解.
【详解】
解:A、,能用平方差公式分解因式,故本选项符合题意;
B、 ,不能用平方差公式分解因式,故本选项不符合题意 ;
C、 ,不能用平方差公式分解因式,故本选项不符合题意 ;
D、 ,不能用平方差公式分解因式,故本选项不符合题意 ;
故选:A
【点睛】
本题主要考查了用平方差公式因式分解,熟练掌握平方差公式 是解题的关键.
5、A
【解析】
【分析】
利用完全平方公式和平方差公式对各个选项进行判断即可.
【详解】
解:A、,故本选项正确;
B、x2+2xy-y2 一、三项不符合完全平方公式,不能用公式法进行因式分解,故本选项错误;
C、x2+xy-y2中间乘积项不是两底数积的2倍,不能用公式法进行因式分解,故本选项错误;
D、-x2-y2不符合平方差公式,不能用公式法进行因式分解,故本选项错误.
故选:A.
【点睛】
本题考查了公式法分解因式,能用完全平方公式进行因式分解的式子的特点是:两项平方项的符号相同,另一项是两底数积的2倍,熟记公式结构是求解的关键.
6、B
【解析】
【分析】
根据因式分解定义,把一个多项式化为几个整式的积的形式,对各选项进行一一分析即可.
【详解】
解:A. a(x+y)=ax+ay,多项式乘法,故选项A不合题意
B. 10x2﹣5x=5x(2x﹣1)是因式分解,故选项B符合题意;
C. x2﹣4x+4=(x﹣2)2因式分解不正确,故选项C不合题意;
D. x2﹣16+3x=(x+4)(x﹣4)+3x,不是因式分解,故选项D不符合题意.
故选B.
【点睛】
本题考查因式分解,掌握因式分解的定义是解题关键.
7、C
【解析】
【分析】
根据提取公因式的方法计算即可;
【详解】
原式,
∴2an﹣1﹣4an+1的公因式是,即;
故选C.
【点睛】
本题主要考查了利用提取公因式法因式分解,准确分析计算是解题的关键.
8、B
【解析】
【分析】
判断一个式子是否是因式分解的条件是①等式的左边是一个多项式,②等式的右边是几个整式的积,③左、右两边相等,根据以上条件进行判断即可.
【详解】
解:A、,不是因式分解;故A错误;
B、,是因式分解;故B正确;
C、,故C错误;
D、,不是因式分解,故D错误;
故选:B.
【点睛】
本题考查了因式分解的意义,把多项式转化成几个整式积的形式是解题关键.
9、B
【解析】
【分析】
根据因式分解的意义对各选项进行逐一分析即可.
【详解】
解:、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意;
、符合因式分解的意义,是因式分解,故本选项正确,符合题意;
、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意;
、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意.
故选:B.
【点睛】
本题考查的是因式分解的意义,解题的关键是把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.
10、A
【解析】
【分析】
先把原式化为,结合完全平方公式可得原式可化为从而可得答案.
【详解】
解:x2-4x+y2-6y+13
故选A
【点睛】
本题考查的是代数式的值,非负数的性质,利用完全平方公式分解因式,掌握“”是解本题的关键.
二、填空题
1、
【解析】
【分析】
将当作整体,对式子先进行配方,然后利用平方差公式求解即可.
【详解】
解:原式.
故答案是:.
【点睛】
此题考查了因式分解,涉及了平方差公式,解题的关键是掌握因式分解的方法,并将当作整体,得到平方差的形式.
2、
【解析】
【分析】
会利用公式进行因式分解,对另两项提取公因式,再提取即可因式分解.
【详解】
解:,
,
,
故答案为:.
【点睛】
本题主要考查了提取公因式法以及公式法分解因式,解题的关键是正确运用公式法分解因式.
3、
【解析】
【分析】
利用十字相乘法分解因式即可.
【详解】
解:,
故答案为:.
【点睛】
本题考查了十字相乘法因式分解,解题关键是明确二次项系数为1的十字相乘法公式:.
4、
【解析】
【分析】
利用平方差公式分解得到结果,即可做出判断.
【详解】
解:
=
=
故答案为:
【点睛】
此题考查了因式分解-运用公式法,熟练掌握平方差公式是解本题的关键.
5、
【解析】
【分析】
先提取公因式,再用完全平方公式分解即可.
【详解】
解:,
=,
=
故答案为:.
【点睛】
本题考查了因式分解,解题关键是熟练运用提取公因式和公式法进行因式分解.
三、解答题
1、(1);(2)
【解析】
【分析】
(1)用平方差公式分解即可;
(2)先提取公因式,再用平方差公式分解即可;
【详解】
解:(1)=(a2+1)(a2-1)= ;
(2)
=
=
=.
【点睛】
题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.
2、-y(2x-y)2
【解析】
【分析】
先提取公因式-y,再利用完全平方公式分解因式即可得答案.
【详解】
4xy2﹣4x2y﹣y3
=-y(4x2-4xy+y2)
=-y(2x-y)2.
【点睛】
本题考查用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
3、(1)提公因式法; 2;(2)2021;(x+1)2022;(3)(1+x)n+1.
【解析】
【分析】
(1)直接利用已知解题方法分析得出答案;
(2)结合(1)中解题方法得出答案;
(3)结合(1)中解题方法得出答案.
【详解】
解:(1)上述分解因式的方法是提公因式法,共应用了2次;
故答案为:提公因式法; 2;
(2)若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2021,
则需应用上述方法2021次,结果是(x+1)2022;
故答案为:2021;(x+1)2022;
(3)1+x+x(x+1)+x(x+1)2+…+x(x+1)n=(1+x)n+1.
故答案为:(1+x)n+1.
【点睛】
此题主要考查了提取公因式法以及数字变换规律,正确得出次数变化规律是解题关键.
4、①;②.
【解析】
【分析】
①先提取公因式,再利用平方差公式因式分解;
②先提取公因式,再利用完全平方公式因式分解.
【详解】
解:①原式=
=;
②原式=
=.
【点睛】
本题考查综合利用提公因式法和公式法因式分解.一般能提公因式先提取公因式,再考虑能否运用公式法因式分解.
5、(1);(2)
【解析】
【分析】
(1)先提公因式-3,再利用完全平方公式分解;
(2)先提公因式(x-y),再利用平方差公式分解因式.
【详解】
解:(1)
=
=
(2)
=
=
=.
【点睛】
此题考查了因式分解,正确掌握因式分解的方法:提公因式法和公式法(平方差公式、完全平方公式)及解决问题是解题的关键.
相关试卷
这是一份北京课改版七年级下册第八章 因式分解综合与测试当堂达标检测题,共17页。试卷主要包含了能利用进行因式分解的是,下列多项式中有因式x﹣1的是,已知x,y满足,则的值为,当n为自然数时,等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试同步测试题,共15页。试卷主要包含了下列因式分解正确的是,能利用进行因式分解的是,把代数式分解因式,正确的结果是等内容,欢迎下载使用。
这是一份七年级下册第八章 因式分解综合与测试随堂练习题,共16页。试卷主要包含了已知x,y满足,则的值为,下列各式从左至右是因式分解的是等内容,欢迎下载使用。