2020-2021学年第八章 因式分解综合与测试课时作业
展开京改版七年级数学下册第八章因式分解同步训练
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若,则E是( )
A. B. C. D.
2、下列从左到右的变形,是分解因式的是( )
A.xy2(x﹣1)=x2y2﹣xy2 B.2a2+4a=2a(a+2)
C.(a+3)(a﹣3)=a2﹣9 D.x2+x﹣5=(x﹣2)(x+3)+1
3、下列因式分解正确的是( )
A.16m2-4=(4m+2)(4m-2) B.m4-1=(m2+1)(m2-1)
C.m2-6m+9=(m-3)2 D.1-a2=(a+1)(a-1)
4、下列等式中,从左到右是因式分解的是( )
A. B.
C. D.
5、下列各式能用公式法因式分解的是( ).
A. B. C. D.
6、下列由左到右的变形,是因式分解的是( )
A. B.
C. D.
7、下列多项式中,不能用公式法因式分解的是( )
A. B. C. D.
8、下列等式中,从左到右的变形是因式分解的是( )
A. B.
C. D.
9、下列因式分解中,正确的是( )
A. B.
C. D.
10、把多项式x3﹣2x2+x分解因式结果正确的是( )
A.x(x2﹣2x) B.x2(x﹣2)
C.x(x+1)(x﹣1) D.x(x﹣1)2
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、分解因式:5x4﹣5x2=________________.
2、分解因式:3a(x﹣y)+2b(y﹣x)=___.
3、1002﹣992+982﹣972+962﹣952+…+22﹣12=___.
4、把多项式2a3﹣2a分解因式的结果是___.
5、分解因式_________.
三、解答题(5小题,每小题10分,共计50分)
1、因式分解:
(1)
(2)
2、因式分解:
3、阅读下列材料:
一般地,没有公因式的多项式,当项数为四项或四项以上时,经常把这些项分成若干组,然后各组运用提取公因式法或公式法分别进行分解,之后各组之间再运用提取公因式法或公式法进行分解,这种因式分解的方法叫做分组分解法.如:
因式分解:
=
=
=
(1)利用分组分解法分解因式:
①;
②
(2)因式分解:=_______(直接写出结果).
4、下面是某同学对多项式(x2+2x)(x2+2x+2)+1进行因式分解的过程
解:设x2+2x=y,
原式 =y(y+2)+1 (第一步)
=y2+2y+1 (第二步)
=(y+1)2 (第三步)
=(x2+2x+1)2 (第四步)
(1)该同学第二步到第三步运用了因式分解的( )
A.提取公因式 B.平方差公式
C.两数和的完全平方公式 D.两数差的完全平方公式
(2)该同学在第四步将y用所设中的含x的代数式代换,这个结果是否分解到最后?
.(填“是”或“否”)如果否,直接写出最后的结果
(3)请你模仿以上方法尝试对多项式(x2﹣4x+3)(x2﹣4x+5)+1进行因式分解.
5、分解因式:2a2-8ab+8b2.
---------参考答案-----------
一、单选题
1、C
【解析】
【分析】
观察等式的右边,提取的是,故可把变成,即左边=.
【详解】
解:,
∴,
故选C.
【点睛】
本题主要考查了利用提取公因式法分解因式,解题的关键在于能够熟练掌握提公因式法.
2、B
【解析】
【分析】
根据因式分解的意义对各选项进行逐一分析即可.
【详解】
解:、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意;
、符合因式分解的意义,是因式分解,故本选项正确,符合题意;
、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意;
、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意.
故选:B.
【点睛】
本题考查的是因式分解的意义,解题的关键是把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.
3、C
【解析】
【分析】
把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,根据因式分解的定义即可求解.
【详解】
解:A、16m2-4=4(4 m2-1)=4(m+1)(m-1),故该选项错误;
B、m4-1=(m2+1)(m2-1)=(m+1)(m-1)(m2+1),故该选项错误;
C、m2-6m+9=(m-3)2,故该选项正确;
D、1-a2=(a+1)(1-a),故该选项错误;
故选:C.
【点睛】
本题考查了因式分解的意义,属于基础题,关键是掌握因式分解的定义.一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
4、B
【解析】
【分析】
根据因式分解的定义:把一个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解,进行求解即可.
【详解】
解:A、,不是整式积的形式,不是因式分解,不符而合题意;
B、,是因式分解,符合题意;
C、,不是乘积的形式,不是因式分解,不符合题意;
D、,不是乘积的形式,不是因式分解,不符合题意;
故选B.
【点睛】
本题主要考查了因式分解的定义,熟知定义是解题的关键.
5、A
【解析】
【分析】
利用完全平方公式和平方差公式对各个选项进行判断即可.
【详解】
解:A、,故本选项正确;
B、x2+2xy-y2 一、三项不符合完全平方公式,不能用公式法进行因式分解,故本选项错误;
C、x2+xy-y2中间乘积项不是两底数积的2倍,不能用公式法进行因式分解,故本选项错误;
D、-x2-y2不符合平方差公式,不能用公式法进行因式分解,故本选项错误.
故选:A.
【点睛】
本题考查了公式法分解因式,能用完全平方公式进行因式分解的式子的特点是:两项平方项的符号相同,另一项是两底数积的2倍,熟记公式结构是求解的关键.
6、A
【解析】
【分析】
根据因式分解的定义,对各选项作出判断,即可得出正确答案.
【详解】
解:A、,是因式分解,故此选项符合题意;
B、,原式分解错误,故本选项不符合题意;
C、右边不是整式的积的形式,故本选项不符合题意;
D、原式是整式的乘法运算,不是因式分解,故本选项不符合题意;
故选:A.
【点睛】
本题考查了分解因式的定义.解题的关键是掌握分解因式的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.
7、D
【解析】
【分析】
利用完全平方公式把,分解因式,利用平方差公式把,从而可得答案.
【详解】
解:故A不符合题意;
故B不符合题意;
故C不符合题意;
,不能用公式法分解因式,故D符合题意;
故选D
【点睛】
本题考查的是利用平方差公式与完全平方公式分解因式,熟悉平方差公式与完全平方公式的特点是解题的关键.
8、C
【解析】
【分析】
根据因式分解的定义(把一个多项式化成几个最简整式的乘积的形式,这种多项式的变形叫做因式分解)逐项判断即可得.
【详解】
解:A、,则原等式不成立,此项不符题意;
B、等式的右边不是乘积的形式,则此项不符题意;
C、是因式分解,此项符合题意;
D、等式右边中的不是整式,则此项不符题意;
故选:C.
【点睛】
本题考查了因式分解的定义,熟记定义是解题关键.
9、D
【解析】
【分析】
A、原式利用完全平方公式分解得到结果,即可作出判断;B、原式利用完全平方公式分解得到结果,即可作出判断;C、原式不能分解,不符合题意;D、原式利用平方差公式分解得到结果,即可作出判断.
【详解】
解:A、原式,不符合题意;
B、原式,不符合题意;
C、原式不能分解,不符合题意;
D、原式,符合题意.
故选:D.
【点睛】
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
10、D
【解析】
【分析】
先提取公因式,再按照完全平方公式分解即可得到答案.
【详解】
解:x3﹣2x2+x
故选D
【点睛】
本题考查的是综合利用提公因式与公式法分解因式,掌握“利用完全平方公式分解因式”是解本题的关键.
二、填空题
1、5x2(x+1)(x-1)
【解析】
【分析】
直接提取公因式5x2,进而利用平方差公式分解因式.
【详解】
解:5x4-5x2=5x2(x2-1)
=5x2(x+1)(x-1).
故答案为:5x2(x+1)(x-1).
【点睛】
本题考查了提取公因式法、公式法分解因式,正确运用乘法公式是解题关键.
2、
【解析】
【分析】
根据提公因式法因式分解即可.
【详解】
3a(x﹣y)+2b(y﹣x)=
故答案为:
【点睛】
本题考查了提公因式法因式分解,正确的计算是解题的关键.
3、5050
【解析】
【分析】
先根据平方差公式进行因式分解,再计算加法,即可求解.
【详解】
解: 1002-992 + 982-972 + 962-952 +…+22-12
=(100 + 99)(100-99)+(98 + 97)(98-97)+…+(2+1)(2-1)
= 100+ 99+98+ 97+…+2+1
= 5050.
故答案为:5050
【点睛】
本题主要考查了平方差公式的应用,熟练掌握平方差公式 的特征是解题的关键.
4、
【解析】
【分析】
直接利用提取公因式法分解因式,进而利用平方差公式分解因式即可.
【详解】
解:2a3﹣2a
=
=;
故答案为2a(a+1)(a-1)
【点睛】
此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.
5、
【解析】
【分析】
直接提取公因式m,进而分解因式得出答案.
【详解】
解:
=m(m+6).
故答案为:m(m+6).
【点睛】
此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.
三、解答题
1、(1);(2)
【解析】
【分析】
(1)先提取公因式 再利用平方差公式分解因式即可;
(2)先计算整式的乘法运算,再利用完全平方公式分解因式即可.
【详解】
解:(1)
(2)
【点睛】
本题考查的是综合提公因式与公式法分解因式,掌握“利用平方差公式与完全平方公式分解因式”是解本题的关键.
2、
【解析】
【分析】
把原式分组成,然后利用完全平方公式和平方差公式化简即可.
【详解】
解:原式
【点睛】
本题考查了利用完全平方公式和平方差公式因式分解,把原式有3项适合完全平方的放在一起进行因式分解是解答此题的关键.
3、(1)① ;②;(2).
【解析】
【分析】
(1)仿照题目所给例题进行分组分解因式即可;
(2)利用平方差和完全平方公式进行分解因式即可.
【详解】
解:(1)①
;
②
=
=;
(2)
,
故答案为:.
【点睛】
本题主要考查了分解因式,解题的关键在于能够熟练掌握分解因式分方法.
4、(1)C;(2)否,;(3)
【解析】
【分析】
(1)根据题意可知,第二步到第三步用到了完全平方公式;
(2)观察第四步可知,括号里面的还是一个完全平方公式还可以继续分解因式,由此求解即可;
(3)仿照题意,设然后求解即可.
【详解】
解:(1)根据题意可知,该同学第二步到第三步运用了因式分解的两数和的完全平方公式 ,
故选C;
(2)观察第四步可知,括号里面的还是一个完全平方公式还可以继续分解因式,
∴分解分式的结果为:,
故答案为:否,;
(3)设
∴
.
【点睛】
本题主要考查了用完全平方公式分解因式,解题的关键在于能够准确理解题意.
5、2(a-2b)2
【解析】
【分析】
先提取公因式2,再利用完全平方公式因式分解.
【详解】
解:2a2-8ab+8b2
=2(a2-4ab+4b2)
=2(a-2b)2.
【点睛】
本题考查了整式的因式分解,掌握因式分解的完全平方公式是解决本题的关键.
初中数学北京课改版七年级下册第八章 因式分解综合与测试习题: 这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试习题,共16页。试卷主要包含了如图,长与宽分别为a,已知c<a<b<0,若M=|a等内容,欢迎下载使用。
初中数学北京课改版七年级下册第八章 因式分解综合与测试当堂检测题: 这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试当堂检测题,共16页。
2020-2021学年第八章 因式分解综合与测试综合训练题: 这是一份2020-2021学年第八章 因式分解综合与测试综合训练题,共15页。试卷主要包含了若,则E是,下列各式中,正确的因式分解是等内容,欢迎下载使用。