初中数学北京课改版七年级下册第八章 因式分解综合与测试随堂练习题
展开
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试随堂练习题,共15页。试卷主要包含了下列因式分解正确的是,已知的值为5,那么代数式的值是,计算的值是,下列因式分解错误的是等内容,欢迎下载使用。
京改版七年级数学下册第八章因式分解定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各式中从左到右的变形中,是因式分解的是( )A. B.C. D.2、下列由左到右的变形,属于因式分解的是( )A. B.C. D.3、下列因式分解正确的是( )A. B.C. D.4、下列因式分解正确的是( )A. B.C. D.5、可以被24和31之间某三个整数整除,这三个数是( )A.25,26,27 B.26,27,28 C.27,28,29 D.28,29,306、已知的值为5,那么代数式的值是( )A.2030 B.2020 C.2010 D.20007、计算的值是( )A. B. C. D.28、下列因式分解错误的是( )A.3x-3y=3(x-y) B.x2-4=(x+2)(x-2)C.x2+6x-9=(x+9)2 D.-x2-x+2=-(x-1)(x+2)9、已知a+b=2,a-b=3,则等于( )A.5 B.6 C.1 D.10、下列各式能用完全平方公式进行因式分解的是( )A.9x2-6x+1 B.x2+x+1 C.x2+2x-1 D.x2-9第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、分解因式:________.2、如果,,那么代数式的值是________.3、分解因式:______.4、分解因式:a3﹣2a2b+ab2=___.5、已知a2+a-1=0,则a3+2a2+2021=________.三、解答题(5小题,每小题10分,共计50分)1、分解因式:(1)3a2﹣6a+3 (2)(x2+y2)2﹣4x2y22、(1)计算:x(x2y2﹣xy)÷x2y;(2)分解因式:3bx2+6bxy+3by2.3、利用因式分解计算:(1)22014﹣22013;(2)(﹣2)101+(﹣2)100.4、仔细阅读下面例题,解答问题:例题:已知:二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n),则x2﹣4x+m=x2+(n+3)x+3n∴解得:n=﹣7,m=﹣21∴另一个因式为(x﹣7),m的值为﹣21.问题:仿照以上方法解答下面问题:已知二次三项式2x2+3x﹣k有一个因式是(x﹣5),求另一个因式以及k的值.5、 ---------参考答案-----------一、单选题1、C【解析】【分析】由题意依据因式分解的定义即把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.【详解】解:A、,是整式的乘法,不是因式分解故A错误;B、,是整式不是因式分解;C、,是因式分解;D、右边不是整式的积的形式(含有分式),不是因式分解;故选:C.【点睛】本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子.2、A【解析】【分析】直接利用因式分解的定义分别分析得出答案.【详解】解:、,是因式分解,符合题意.、,是整式的乘法运算,故此选项错误,不符合题意;、,不符合因式分解的定义,故此选项错误,不符合题意;、,不符合因式分解的定义,故此选项错误,不符合题意;故选:A.【点睛】本题主要考查了因式分解的意义,解题的关键是正确把握分解因式的定义,即分解成几个式子相乘的形式.3、D【解析】【分析】各项分解得到结果,即可作出判断.【详解】解:A、,不符合题意;B、,不符合题意;C、,不符合题意;D、因式分解正确,符合题意,故选:D.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.4、B【解析】【分析】直接利用提取公因式法以及十字相乘法分解因式,进而判断即可.【详解】解:A、,故此选项不合题意;B、,故此选项符合题意;C、,故此选项不合题意;D、,不能分解,故此选项不合题意;故选:B.【点睛】本题主要考查了提取公因式法以及十字相乘法分解因式,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.5、B【解析】【分析】先提取公因式27,再逐步利用平方差公式分解因式,即可得到答案.【详解】解: 所以可以被26,27,28三个整数整除,故选B【点睛】本题考查的是利用平方差公式分解因式,掌握平方差公式的特点并灵活应用是解本题的关键.6、B【解析】【分析】将化简为,再将代入即可得.【详解】解:∵,把代入,原式=,故选B.【点睛】本题考查了代数式求值,解题的关键是把掌握提公因式.7、B【解析】【分析】直接找出公因式进而提取公因式,进行分解因式即可.【详解】解:.故选:B【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.8、C【解析】【分析】提取公因式判断A,根据平方差公式和完全平方公式分解因式判断B,C,D即可.【详解】解:显然对于A,B,D正确,不乖合题意,对于C:右边≠左边,故C错误,符合题意;故选:C.【点睛】本题考查了因式分解,熟练掌因式分解的方法是解题的关键.9、B【解析】【分析】根据平方差公式因式分解即可求解【详解】∵a+b=2,a-b=3,∴故选B【点睛】本题考查了根据平方差公式因式分解,掌握平方差公式是解题的关键.10、A【解析】【分析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项解析判断后利用排除法求解:【详解】A. 9x2-6x+1 ,故该选项正确,符合题意; B. x2+x+1,不符合完全平方公式法分解因式的式子特点,故选项不符合题意; C. x2+2x-1,不符合完全平方公式法分解因式的式子特点,故选项不符合题意; D. x2-9,不符合完全平方公式法分解因式的式子特点,故选项不符合题意;故选A【点睛】此题主要考查了运用公式法分解因式,正确应用公式是解题关键.二、填空题1、【解析】【分析】原式提取公因式,再利用平方差公式分解即可.【详解】解:原式=,=故答案为:.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.2、-64【解析】【分析】先提公因式再利用平方差公式分解因式,然后将已知整体代入求值,即可.【详解】解:==∵,,∴原式=2×(-4)×8=-64,故答案是:-64.【点睛】本题主要考查代数式求值,掌握平方差公式,进行分解因式,是解题的关键.3、【解析】【分析】用提公因式法即可分解因式.【详解】.故答案为:.【点睛】本题考查了提公因式法分解因式,因式分解的步骤一般是先考虑提公因式,其次考虑公式法.另外因式分解要进行到再也不能分解为止.4、【解析】【分析】先提取公因式a,再利用完全平方公式因式分解.【详解】解:,故答案为:.【点睛】本题考查综合利用提公因式法和公式法因式分解.一般有公因式先提取公因式,再看是否能用公式法因式分解.5、2022【解析】【分析】将已知条件变形为a2=1-a、a2+a=1,然后将代数式a3+2a2+2021进一步变形进行求解.【详解】解:∵a2+a-1=0,∴a2=1-a、a2+a=1,∴a3+2a2+2021,=a•a2+2(1-a)+2021,=a(1-a)+2-2a+2021,=a-a2-2a+2023,=-a2-a+2023,=-(a2+a)+2023,=-1+2023=2022.故答案为:2022【点睛】本题考查了求代数式的值,是一道涉及因式分解的计算题,考查了拆项法分 解因式的运用,提公因式法的运用.三、解答题1、(1);(2)【解析】【分析】(1)先提公因式3,再由完全平方公式进行因式分解;(2)先由完全平方公式去括号,化简再由完全平方公式以及平方差公式进行因式分解即可.【详解】(1),,;(2),,,,.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.2、(1)xy-1;(2)3b(x+y)2.【解析】【分析】(1)先计算单项式乘多项式,再计算多项式除以单项式,即可;(2)先提取公因式3b,再利用完全平方公式继续分解即可.【详解】解:(1)x(x2y2﹣xy)÷x2y=(x3y2-x2y)÷x2y=x3y2÷x2y -x2y÷x2y=xy-1;(2)3bx2+6bxy+3by2=3b(x2+2xy+y2)=3b(x+y)2.【点睛】本题考查了单项式乘多项式,多项式除以单项式以及提公因式法与公式法的综合运用,熟练掌握运算法则是解本题的关键.3、(1)22013;(2)﹣2100【解析】【分析】(1)根据22014=2×22013进行解答即可;(2)根据(﹣2)101=(﹣2)×(﹣2)100进行解答.【详解】解:(1)22014﹣22013=2×22013﹣22013=(2-1)×22013=22013(2)(﹣2)101+(﹣2)100=(﹣2)×(﹣2)100+(﹣2)100=(-2+1)×(﹣2)100=﹣2100.【点睛】本题主要考查因式分解,熟练掌握提公因式是解题的关键.4、另一个因式为(2x+13),k的值为65.【解析】【分析】设另一个因式为(2x+a),根据题意列出等式,利用系数对应相等列出得到关于a和k的方程求解即可.【详解】解:设另一个因式为(2x+a),得2x2+3x﹣k=(x﹣5)(2x+a)则2x2+3x﹣k=2x2+(a﹣10)x﹣5a∴,解得:a=13,k=65.故另一个因式为(2x+13),k的值为65.【点睛】此题考查了因式分解和整式乘法的关系,解题的关键是根据题意设出另一个因式列出等式求解.5、【解析】【分析】根据平方差公式求解即可.【详解】解:【点睛】此题考查了平方差公式的应用,涉及了整式加减运算,解题的关键是掌握平方差公式,利用整体思想进行求解.
相关试卷
这是一份数学七年级下册第八章 因式分解综合与测试课时训练,共17页。试卷主要包含了下列多项式中有因式x﹣1的是,下列各式中,正确的因式分解是,已知c<a<b<0,若M=|a等内容,欢迎下载使用。
这是一份北京课改版七年级下册第八章 因式分解综合与测试一课一练,共16页。试卷主要包含了下列因式分解正确的是等内容,欢迎下载使用。
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试一课一练,共16页。试卷主要包含了已知,,那么的值为,下列因式分解正确的是,多项式与的公因式是等内容,欢迎下载使用。