2020-2021学年第26章 概率初步综合与测试综合训练题
展开
这是一份2020-2021学年第26章 概率初步综合与测试综合训练题,共17页。试卷主要包含了在一个不透明的布袋中,红色,若a是从“等内容,欢迎下载使用。
沪科版九年级数学下册第26章概率初步专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列事件中,属于必然事件的是( )A.小明买彩票中奖 B.在一个只有红球的盒子里摸球,摸到了白球C.任意抛掷一只纸杯,杯口朝下 D.三角形两边之和大于第三边2、中国象棋文化历史久远.在图中所示的部分棋盘中,“馬”的位置在“”(图中虚线)的下方,“馬”移动一次能够到达的所有位置已用“●”标记,则“馬”随机移动一次,到达的位置在“”上方的概率是( )A. B. C. D.3、在一个不透明的盒子中装有12个白球,4个黄球,这些球除颜色外都相同.若从中随机摸出一个球,则摸出的一个球是黄球的概率为( )A. B. C. D.4、在一个不透明的布袋中,红色、黑色、白色的玻璃球共有60个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在0.15和0.45,则布袋中白色球的个数可能是( )A.24 B.18 C.16 D.65、任意掷一枚质地均匀的骰子,偶数点朝上的可能性是( )A. B. C. D.6、 “2022年春节期间,中山市会下雨”这一事件为( )A.必然事件 B.不可能事件 C.确定事件 D.随机事件7、若a是从“、0、1、2”这四个数中任取的一个数,则关于x的方程为一元二次方程的概率是( )A.1 B. C. D.8、如图,将一个棱长为3的正方体表面涂上颜色,把它分割成棱长为1的小正方体,将它们全部放入一个不透明盒子中摇匀,随机取出一个小正方体,有三个面被涂色的概率为( )A. B. C. D.9、乒乓球比赛以11分为1局,水平相当的甲、乙两人进行乒乓球比赛,在一局比赛中,甲已经得了8分,乙只得了2分,对这局比赛的结果进行预判,下列说法正确的是( )A.甲获胜的可能性比乙大 B.乙获胜的可能性比甲大C.甲、乙获胜的可能性一样大 D.无法判断10、甲、乙两位同学在一次用频率去估计概率的实验中统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的实验可能是( )A.掷一枚正六面体的骰子,出现1点的概率B.一个袋子中有2个白球和1个红球,从中任取一个球,则取到红球的概率C.抛一枚硬币,出现正面的概率D.任意写一个整数,它能被2整除的概率第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在一个不透明的袋子中装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次实验发现,摸出黄球的频率稳定在0.30左右,则袋子中黄球的数量可能是 _____个.2、在一个不透明的盒子中装有2个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为_______.3、某农科所为了了解新玉米种子的出芽情况,在推广前做了五次出芽实验,在相同的培育环境中分别实验,实验具体情况记录如下:种子数量10030050010003000出芽数量992824809802910随着实验种子数量的增加,可以估计A种子出芽的概率是 _____.4、如图,一个可以自由转动且质地均匀的转盘,被分成6个大小相同的扇形,指针是固定的,当转盘停止时,指针指向任意一个扇形的可能性相同(指针指向两个扇形的交线时,当作指向右边的扇形).把部分扇形涂上了灰色,则指针指向灰色区域的概率为______.5、某农场引进一批新稻种,在播种前做了五次发芽实验,每次任取800粒稻种进行实验.实验的结果如表所示:实验的稻种数n∕粒800800800800800发芽的稻种数m∕粒763757761760758发芽的频率0.9540.9460.9510.9500.948在与实验条件相同的情况下,估计种一粒这样的稻种发芽的概率为 _____(精确到0.01);如果该农场播种了此稻种2万粒,那么能发芽的大约有 _____万粒.三、解答题(5小题,每小题10分,共计50分)1、某商家销售一批盲盒,每一个看上去无差别的盲盒内含有A,B,C,D四种玩具中的一种,抽到玩具B的有关统计量如表所示:抽盲盒总数50010001500200025003000频数130273414566695843频率0.2600.2730.2760.2830.2780.281(1)估计从这批盲盒中任意抽取一个是玩具B的概率是 ;(结果保留小数点后两位)(2)小明从分别装有A,B,C,D四种玩具的四个盲盒中随机抽取两个,请利用画树状图或列表的方法,求抽到的两个玩具恰为玩具A和玩具C的概率.2、从长为2cm,3cm,4cm,5cm的4条线段中随机取出3条线段,问随机取出的3条线段能围成一个三角形的概率是多少?3、学校为了促进垃圾的分类处理,将日常生活中的垃圾分为可回收、厨余和其它三类,分别设置了相应的垃圾箱,“可回收物”箱、“厨余垃圾”箱和“其他垃圾”箱.(1)若圆圆把一袋厨余垃圾随机投放,恰好能放对的概率是多少?(2)方方把垃圾分装在三个袋中,可他在投放时有些粗心,每袋垃圾都放错了位置(每个箱中只投放一袋),请你用画树状图的方法求方方把每袋垃圾都放错的概率.4、不透明的袋中有3个大小相同的小球,其中2个为白色,1个为红色,请用画树状图(或列表)的方法,求一次摸出两个球“都是白球”的概率.5、从2021年开始,重庆市新高考采用“”模式:“3”指全国统考科目,即:语文、数学、外语三个学科为必选科目;“1”为首选科目,即:物理、历史这2个学科中任选1科,且必须选1科;“2”为再选科目,即:化学、生物、思想政治、地理这4个学科中任选2科,且必须选2科.小红在高一上期期末结束后,需要选择高考科目.(1)小红在“首选科目”中,选择历史学科的概率是___________.(2)用列表法或画树状图法,求小红在“再选科目”中选择思想政治和地理这两门学科的概率. -参考答案-一、单选题1、D【分析】根据事件发生的可能性大小判断即可.【详解】解;A、小明买彩票中奖是随机事件,不符合题意;B、在一个只有红球的盒子里摸球,摸到了白球是不可能事件,不符合题意;C、任意抛掷一只纸杯,杯口朝下是随机事件,不符合题意;D、三角形两边之和大于第三边是必然事件,符合题意;故选:D.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2、C【分析】用“---”(图中虚线)的上方的黑点个数除以所有黑点的个数即可求得答案.【详解】解:观察“馬”移动一次能够到达的所有位置,即用“●”标记的有8处,位于“---”(图中虚线)的上方的有2处,所以“馬”随机移动一次,到达的位置在“---”上方的概率是,故选:C.【点睛】本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.3、C【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:一个不透明的盒子中装有12个白球,4个黄球,从中随机摸出一个球,所有等可能的情况16种,其中摸出的一个球是黄球的情况有4种,∴随机抽取一个球是黄球的概率是.故选C.【点睛】本题主要考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.得到所有符合条件的情况数是解决本题的关键.4、A【分析】根据频率之和为1计算出白球的频率,然后再根据“数据总数×频率=频数”,算白球的个数即可.【详解】解:∵摸到红色球、黑色球的频率稳定在0.15和0.45,∴摸到白球的频率为1-0.15-0.45=0.40,∴口袋中白色球的个数可能是60×0.40=24个.故选A.【点睛】本题考查了由频率估计概率,大量反复试验下频率稳定值即概率.根据频率之和为1计算出摸到白球的频率是解答本题的关键.5、A【分析】如果一个事件的发生有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率 利用概率公式直接计算即可得到答案.【详解】解:抛掷一枚分别标有1,2,3,4,5,6的正方体骰子,骰子落地时朝上的数为偶数的可能性有种,而所有的等可能的结果数有种,所以骰子落地时朝上的数为偶数的概率是 故选A【点睛】本题考查了简单随机事件的概率,掌握概率公式是解本题的关键.6、D【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:“2022年年春节期间,中山市会下雨”这一事件为随机事件,故选:D.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7、B【分析】根据一元二次方程的定义,二次项系数不为0,四个数中有一个1不能取,a是从“、0、1、2”这四个数中任取的一个数,有四种等可能的结果,其中满足条件的情况有3种,然后利用概率公式计算即可.【详解】解:当a=1时于x的方程不是一元二次方程,其它三个数都是一元二次方程,a是从“、0、1、2”这四个数中任取的一个数,有四种等可能的结果,其中满足条件的情况有3种,关于x的方程为一元二次方程的概率是,故选择B.【点睛】本题考查一元二次方程的定义,列举法求概率,掌握一元二次方程的定义,列举法求概率方法是解题关键.8、B【分析】直接根据题意得出恰有三个面被涂色的有8个,再利用概率公式求出答案.【详解】解:由题意可得:小立方体一共有27个,恰有三个面被涂色的为棱长为3的正方体顶点处的8个小正方体;故取得的小正方体恰有三个面被涂色.的概率为.故选:B.【点睛】此题主要考查了概率公式的应用,正确得出三个面被涂色.小立方体的个数是解题关键.9、A【分析】根据事件发生的可能性即可判断.【详解】∵甲已经得了8分,乙只得了2分,甲、乙两人水平相当∴甲获胜的可能性比乙大故选A.【点睛】此题主要考查事件发生的可能性,解题的关键是根据题意进行判断.10、B【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】解:A、掷一枚正六面体的骰子,出现1点的概率为,故此选项不符合题意;B、一个袋子中有2个白球和1个红球,从中任取一个球,则取到红球的概率≈0.33,故此选项符合题意;C、掷一枚硬币,出现正面朝上的概率为,故此选项不符合题意;D、任意写出一个整数,能被2整除的概率为,故此选项不符合题意.故选:B.【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.二、填空题1、6【分析】由题意直接根据黄球出现的频率和球的总数,可以计算出黄球的个数.【详解】解:由题意可得,20×0.30=6(个),即袋子中黄球的个数最有可能是6个.故答案为:6.【点睛】本题考查利用频率估计概率,解答本题的关键是明确题意,计算出黄球的个数.2、1【分析】设黄球的个数为x个,然后根据概率公式列方程,解此分式方程即可求得答案.【详解】解:设黄球的个数为x个,根据题意得:,解得:x=1,经检验,x=1是原分式方程的解,∴黄球的个数为1个.故答案为:1.【点睛】此题考查了分式方程的应用,以及概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.3、【分析】根据概率的公式解题:A种子出芽的概率=A种子出芽数量÷玉米种子总数量.【详解】解:故答案为:.【点睛】本题考查概率的意义,大量反复试验下频率稳定值即为概率,随机事件发生的概率在0至1之间.4、【分析】指针指向灰色区域的概率就是灰色区域的面积与总面积的比值,计算面积比即可.【详解】解:观察转盘灰色区域的面积与总面积的比值为故答案为:.【点睛】本题考查几何概率.解题的关键在于求出所求事件的面积与总面积的比值.5、0.95 1.9 【分析】(1)根据表格,可以观察出几组数据频率均在0.95附近,故可知发芽的概率为:0.95;(2)已知水稻发芽的概率为0.95,所以发芽数即为:总数×发芽率.【详解】解:由图可知,(1)测试的数据发芽频率均在0.95附近,故概率为:0.95;(2)由(1)可知,水稻发芽的概率为0.95,故发芽数约为:2×0.95=1.9(万).故答案为:(1)0.95;(2)1.9.【点睛】本题主要是从表格中提取所需数据,再利用概率进行计算,掌握概率的基础应用是解题的关键.三、解答题1、(1)0.28;(2)【分析】(1)由表中数据可判断频率在0.28左右摆动,利用频率估计概率可判断任意抽取一个毛绒玩具是优等品的概率为0.28;(2)先列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解可得.(1)解:从这批盲盒中任意抽取一个是玩具B的概率是0.28,故答案为0.28.(2)列表为: ABCDA--BACADABAB--CBDBCACBC--DCDADBDCD--由上表可知,从四种玩具的四个盲盒中随机抽取两个共有12种等可能结果,其中恰为玩具A和玩具C的结果有2种,所以恰为玩具A和玩具C的概率P=.【点睛】本题考查了利用频率估计概率及用列表法或树状图法求概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.2、【分析】先利用列举法求出所有4种可能的结果数,再分别根据三角形三边的关系找出符合条件的结果数,最后根据概率公式计算即可.【详解】解:有4种可能的结果数,它们是:2cm、4cm、5cm;2cm、3cm、5cm;3cm、4cm、5cm;2cm、3cm、4cm,这三条线段能构成一个三角形的结果数为3,所以这三条线段能构成一个三角形的概率=.【点睛】本题主要考查了三角形的三边关系以及概率公式,根据已知确定可能的结果数和符合条件的结果数是解答本题的关键.3、(1),(2)【分析】(1)直接利用概率公式求解即可;(2)画树状图展示所有6种等可能的结果数,找出小亮投放正确的结果数,然后根据概率公式求解;【详解】解:(1)圆圆把一袋厨余垃圾随机投放,共有三种等可能结果,恰好能放对只有一种,恰好能放对的概率是(2)将生活垃圾分为厨余、可回收和其他三类,分别记为a,b,c,相应的垃圾箱,“厨余垃圾”箱、“可回收物”箱和“其他垃圾”箱,分别记为A,B,C,画树状图为:共有6种等可能的结果数,其中方方把每袋垃圾都放错的有2种:所以方方把每袋垃圾都放错的概率=.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.4、【分析】根据题意用列表法列出所有等可能的情况,找出两个球“都是白球”的情况,然后根据概率公式求解即可.【详解】解:由题意可得,所有等可能的情况如下: 白色1白色2红色白色1 (白色2,白色1)(红色,白色1)白色2(白色1,白色2) (红色,白色2)红色(白色1,红色)(白色2,红色) 由表格可知,共有6种等可能的情况,其中两个球“都是白球”的有2种情况,∴一次摸出两个球“都是白球”的概率=.【点睛】本题考查的是用列表法或画树状图法求概率.解题的关键是熟练掌握列表法或画树状图法.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.5、(1)(2)【分析】(1)根据概率的公式计算可得答案;(2)画树状图,共有12个等可能的结果,该同学恰好选中思想政治和地理化两科的结果有2个,再由概率公式求解即可.(1)解:选择物理、历史共有2中等可能结果,选择历史学科的结果有1种,所以选择历史学科的概率是;(2)假设A表示化学、B表示生物、C表示思想政治、D表示地理,画树状图如下图:共有12个等可能的结果,该同学恰好选中思想政治和地理的结果有2个,所以该同学恰好选中思想政治和地理的概率为.【点睛】此题考查了概率的求法,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,还考查了用列表法或树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件,树状图法适合两步或两步以上完成的事件,做题的关键是掌握概率的求法.
相关试卷
这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试测试题,共19页。试卷主要包含了一个不透明的口袋里有红,不透明的布袋内装有形状,下列事件中是必然事件的是,在一个不透明的盒子中装有红球,下列说法正确的是等内容,欢迎下载使用。
这是一份沪科版九年级下册第26章 概率初步综合与测试同步达标检测题,共19页。试卷主要包含了下列事件中,是必然事件的是,下列说法正确的是等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第26章 概率初步综合与测试课时训练,共18页。试卷主要包含了下列事件中,属于必然事件的是,下列判断正确的是,下列说法中正确的是等内容,欢迎下载使用。