初中数学北京课改版七年级下册第八章 因式分解综合与测试巩固练习
展开
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试巩固练习,共17页。试卷主要包含了下列多项式,能利用进行因式分解的是,下列各式的因式分解中正确的是等内容,欢迎下载使用。
京改版七年级数学下册第八章因式分解专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、小东是一位密码爱好者,在他的密码手册中有这样一条信息:、、、、、依次对应下列六个字:科、爱、勤、我、理、学,现将因式分解,其结果呈现的密码信息可能是( ).A.勤学 B.爱科学 C.我爱理科 D.我爱科学2、如果多项式x2﹣5x+c可以用十字相乘法因式分解,那么下列c的取值正确的是( )A.2 B.3 C.4 D.53、关于x的二次三项式x2+ax+36能直接用完全平方公式分解因式,则a的值是( )A.﹣6 B.±6 C.12 D.±124、下列等式中,从左往右的变形为因式分解的是( )A.a2﹣a﹣1=a(a﹣1﹣)B.(a﹣b)(a+b)=a2﹣b2C.m2﹣m﹣1=m(m﹣1)﹣1D.m(a﹣b)+n(b﹣a)=(m﹣n)(a﹣b)5、下列各式中,从左到右的变形是因式分解的是( )A. B.C. D.6、下列多项式:(1)a2+b2;(2)x2-y2;(3)-m2+n2;(4)-b2-a2;(5)-a6+4,能用平方差公式分解的因式有( )A.2个 B.3个 C.4个 D.5个7、能利用进行因式分解的是( )A. B. C. D.8、下列各式的因式分解中正确的是( )A. B.C. D.9、下列各式从左到右的变形是因式分解的是( )A.ax+bx+c=(a+b)x+c B.(a+b)(a﹣b)=a2﹣b2C.(a+b)2=a2+2ab+b2 D.a2﹣5a﹣6=(a﹣6)(a+1)10、下列多项式中能用平方差公式分解因式的是( )A. B. C. D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、分解因式:________.(直接写出结果)2、如果,,那么代数式的值是________.3、因式分解:__________;__________;_________.4、在实数范围内因式分解:x2﹣6x+1=_____.5、已知,,则代数式的值为______.三、解答题(5小题,每小题10分,共计50分)1、因式分解(1)(2)(x-1)(x-3)-82、分解因式:(1)4x2y﹣4xy2+y3.(2)(a2+9)2﹣36a2.3、分解因式:4、下面是某同学对多项式(x2+2x)(x2+2x+2)+1进行因式分解的过程解:设x2+2x=y,原式 =y(y+2)+1 (第一步)=y2+2y+1 (第二步)=(y+1)2 (第三步)=(x2+2x+1)2 (第四步)(1)该同学第二步到第三步运用了因式分解的( )A.提取公因式 B.平方差公式C.两数和的完全平方公式 D.两数差的完全平方公式(2)该同学在第四步将y用所设中的含x的代数式代换,这个结果是否分解到最后? .(填“是”或“否”)如果否,直接写出最后的结果 (3)请你模仿以上方法尝试对多项式(x2﹣4x+3)(x2﹣4x+5)+1进行因式分解.5、把下列各式因式分解:(1)(2). ---------参考答案-----------一、单选题1、C【解析】【分析】利用平方差公式,将多项式进行因式分解,即可求解.【详解】解:∵、、、依次对应的字为:科、爱、我、理,∴其结果呈现的密码信息可能是我爱理科.故选:C【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解的方法是解题的关键.2、C【解析】【分析】根据十字相乘法进行因式分解的方法,对选项逐个判断即可.【详解】解:A、,不能用十字相乘法进行因式分解,不符合题意;B、,不能用十字相乘法进行因式分解,不符合题意;C、,能用十字相乘法进行因式分解,符合题意;D、,不能用十字相乘法进行因式分解,不符合题意;故选C【点睛】此题考查了十字相乘法进行因式分解,解题的关键是掌握十字相乘法进行因式分解.3、D【解析】【分析】利用完全平方公式的结构特征判断即可求出a的值.【详解】解:∵关于x的二次三项式x2+ax+36能直接用完全平方公式分解因式,∴ax=±12x.故选:D.【点睛】此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.4、D【解析】【分析】把一个多项式化为几个整式的乘积的形式叫因式分解,根据定义对各选项进行一一分析判断即可.【详解】A. a2﹣a﹣1=a(a﹣1﹣)∵从左往右的变形是乘积形式,但(a﹣1﹣)不是整式,故选项A不是因式分解;B. (a﹣b)(a+b)=a2﹣b2,从左往右的变形是多项式的乘法,故选项B不是因式分解;C. m2﹣m﹣1=m(m﹣1)﹣1,从左往右的变形不是整体的积的形式,故选项C不是因式分解;D.根据因式分解的定义可知 m(a﹣b)+n(b﹣a)=(m﹣n)(a﹣b)是因式分解,故选项D从左往右的变形是因式分解.故选D.【点睛】本题考查因式分解,掌握因式分解的特征从左往右的变形后各因式乘积,各因式必须为整式,各因式之间不有加减号是解题关键.5、C【解析】【分析】根据因式分解的定义判断即可.【详解】解:因式分解即把一个多项式化成几个整式的积的形式.A. ,不是几个整式的积的形式,A选项不是因式分解;B. ,不是几个整式的积的形式,B选项不是因式分解C. ,符合因式分解的定义,C是因式分解. D. ,不是几个整式的积的形式,D选项不是因式分解;故选C【点睛】本题考查了因式分解的定义,把一个多项式化成几个整式的积的形式的变形叫因式分解,等号的左边是一个多项式,右边是几个整式的积,正确理解因式分解的定义是解题的关键.6、B【解析】【分析】平方差公式:,根据平方差公式逐一分析可得答案.【详解】解:a2+b2不能用平方差公式分解因式,故(1)不符合题意;x2-y2能用平方差公式分解因式,故(2)符合题意;-m2+n2能用平方差公式分解因式,故(3)符合题意;-b2-a2不能用平方差公式分解因式,故(4)不符合题意;-a6+4能用平方差公式分解因式,故(5)符合题意;所以能用平方差公式分解的因式有3个,故选B【点睛】本题考查的是利用平方差公式分解因式,掌握“”是解本题的关键.7、A【解析】【分析】根据平方差公式进行因式分解即可得.【详解】解:A、,此项符合题意;B、不能利用进行因式分解,此项不符题意;C、不能利用进行因式分解,此项不符题意;D、不能利用进行因式分解,此项不符题意;故选:A.【点睛】本题考查了利用平方差公式进行因式分解,熟记平方差公式是解题关键.8、D【解析】【分析】根据提公因式法,先提取各个多项式中的公因式,再对余下的多项式进行观察,能分解的继续分解.【详解】A -a2+ab-ac=-a(a-b+c) ,故本选项错误;B 9xyz-6x2y2=3xy(3z-2xy),故本选项错误;C 3a2x-6bx+3x=3x(a2-2b+1),故本选项错误; D ,故本选项正确.故选:D.【点睛】本题考查提公因式法分解因式,准确确定公因式是求解的关键.9、D【解析】【分析】根据因式分解的定义对各选项进行逐一分析即可.【详解】解:A、ax+bx+c=(a+b)x+c,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;B、(a+b)(a﹣b)=a2﹣b2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;C、(a+b)2=a2+2ab+b2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;D、a2﹣5a﹣6=(a﹣6)(a+1),等式的右边是几个整式的积的形式,故是因式分解,故此选项符合题意;故选:D.【点睛】本题考查了分解因式的定义.解题的关键是掌握分解因式的定义,即把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.10、A【解析】【分析】利用平方差公式逐项进行判断,即可求解.【详解】解:A、,能用平方差公式分解因式,故本选项符合题意;B、 ,不能用平方差公式分解因式,故本选项不符合题意 ;C、 ,不能用平方差公式分解因式,故本选项不符合题意 ;D、 ,不能用平方差公式分解因式,故本选项不符合题意 ;故选:A【点睛】本题主要考查了用平方差公式因式分解,熟练掌握平方差公式 是解题的关键.二、填空题1、2(x-a)(4a-2b-3c)【解析】【分析】提出公因式2(x-a)即可求得结果【详解】解:2(x-a)(4a-2b-3c)故答案为:2(x-a)(4a-2b-3c)【点睛】本题考查了提公因式法因式分解,正确的找到公因式是解题的关键.2、-64【解析】【分析】先提公因式再利用平方差公式分解因式,然后将已知整体代入求值,即可.【详解】解:==∵,,∴原式=2×(-4)×8=-64,故答案是:-64.【点睛】本题主要考查代数式求值,掌握平方差公式,进行分解因式,是解题的关键.3、 ## 【解析】【分析】直接利用提取公因式,平方差和完全平方公式进行因式分解即可.【详解】解:;;;故答案为:;;.【点睛】本题主要考查了因式分解,解题的关键在于能够熟练掌握因式分解的方法.4、【解析】【分析】将该多项式拆项为,然后用平方差公式进行因式分解.【详解】.故答案为:.【点睛】本题考查了因式分解,当要求在实数范围内进行因式分解时,分解的式子的结果一般要分到出现无理数为止.5、12【解析】【分析】把因式分解,再代入已知的式子即可求解.【详解】∵,,∴∴===3×4=12故答案为:12.【点睛】此题主要考查代数式求值,运用完全平方公式因式分解,解题的关键是熟知因式分解的运用.三、解答题1、(1)x2(a2-2y)2;(2)(x-5)(x+1)【解析】【分析】(1)先提取x2,再根据完全平方公式即可求解;(2)先化简,再根据十字相乘法即可求解.【详解】解:(1)=x2(a4-4a2y+4y2)=x2(a2-2y)2(2)(x-1)(x-3)-8=x2-4x+3-8=x2-4x-5=(x-5)(x+1).【点睛】此题主要考查因式分解,解题的关键是熟知因式分解的方法.2、(1)y(2x﹣y)2;(2)(a+3)2(a﹣3)2.【解析】【分析】(1)原式提取公因式y,再利用完全平方公式分解即可;(2)原式先利用平方差公式,进一步用完全平方公式分解即可.【详解】解:(1)原式=y(4x2﹣4xy+y2)=y(2x﹣y)2;(2)原式=(a2+9+6a)(a2+9﹣6a)=(a+3)2(a﹣3)2.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.3、【解析】【分析】原式先变形为,再利用提公因式法分解.【详解】解:原式===【点睛】本题考查因式分解的应用,熟练掌握因式分解的各种方法是解题关键.4、(1)C;(2)否,;(3)【解析】【分析】(1)根据题意可知,第二步到第三步用到了完全平方公式;(2)观察第四步可知,括号里面的还是一个完全平方公式还可以继续分解因式,由此求解即可;(3)仿照题意,设然后求解即可.【详解】解:(1)根据题意可知,该同学第二步到第三步运用了因式分解的两数和的完全平方公式 ,故选C;(2)观察第四步可知,括号里面的还是一个完全平方公式还可以继续分解因式,∴分解分式的结果为:,故答案为:否,;(3)设 ∴ .【点睛】本题主要考查了用完全平方公式分解因式,解题的关键在于能够准确理解题意.5、(1);(2)【解析】【分析】(1)用平方差公式分解即可;(2)先提取公因式,再用平方差公式分解即可;【详解】解:(1)=(a2+1)(a2-1)= ;(2)===.【点睛】题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.
相关试卷
这是一份初中数学北京课改版七年级下册第八章 因式分解综合与测试综合训练题,共17页。试卷主要包含了下列变形,属因式分解的是,已知的值为5,那么代数式的值是,下列多项式因式分解正确的是等内容,欢迎下载使用。
这是一份初中北京课改版第八章 因式分解综合与测试同步练习题,共17页。
这是一份2021学年第八章 因式分解综合与测试同步训练题,共15页。试卷主要包含了当n为自然数时,,下列各式从左至右是因式分解的是,下列各式的因式分解中正确的是等内容,欢迎下载使用。