沪科版九年级下册第24章 圆综合与测试课时练习
展开
这是一份沪科版九年级下册第24章 圆综合与测试课时练习,共39页。试卷主要包含了下列叙述正确的有个.等内容,欢迎下载使用。
沪科版九年级数学下册第24章圆专题练习
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图图案中,不是中心对称图形的是( )
A. B. C. D.
2、如图,PA,PB是⊙O的切线,A,B为切点,PA=4,则PB的长度为( )
A.3 B.4 C.5 D.6
3、如图,点A,B,C均在⊙O上,连接OA,OB,AC,BC,如果OA⊥OB,那么∠C的度数为( )
A.22.5° B.45° C.90° D.67.5°
4、下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B.
C. D.
5、如图,PA是的切线,切点为A,PO的延长线交于点B,若,则的度数为( ).
A.20° B.25° C.30° D.40°
6、如图,CD是的高,按以下步骤作图:
(1)分别以点A和点B为圆心,大于的长为半径作弧,两弧相交于G、H两点.
(2)作直线GH交AB于点E.
(3)在直线GH上截取.
(4)以点F为圆心,AF长为半径画圆交CD于点P.
则下列说法错误的是( )
A. B. C. D.
7、下列叙述正确的有( )个.
(1)随着的增大而增大;
(2)如果直角三角形斜边的长是斜边上的高的4倍,那么这个三角形两个锐角的度数分别是和;
(3)斜边为的直角三角形顶点的轨迹是以中点为圆心,长为直径的圆;
(4)三角形三边的垂直平分线的交点到三角形三个顶点的距离相等;
(5)以为三边长度的三角形,不是直角三角形.
A.0 B.1 C.2 D.3
8、在下列图形中,既是中心对称图形又是轴对称图形的是( )
A. B.
C. D.
9、如图,在中,,,,将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是( )
A. B. C. D.
10、如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8.把△ABC绕点A逆时针方向旋转到△AB'C',点B'恰好落在AC边上,则CC'=( )
A.10 B.2 C.2 D.4
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、为了落实“双减”政策,朝阳区一些学校在课后服务时段开设了与冬奥会项目冰壶有关的选修课.如图,在冰壶比赛场地的一端画有一些同心圆作为营垒,其中有两个圆的半径分别约为60cm和180 cm,小明掷出一球恰好沿着小圆的切线滑行出界,则该球在大圆内滑行的路径MN的长度为______cm.
2、如图,在平面直角坐标系中,点N是直线上动点,M是上动点,若点C的坐标为,且与y轴相切,则长度的最小值为____________.
3、如果一个扇形的弧长等于它所在圆的半径,那么此扇形叫做“完美扇形”.已知某个“完美扇形”的周长等于6,那么这个扇形的面积等于_____.
4、如图,以面积为20cm2的Rt△ABC的斜边AB为直径作⊙O,∠ACB的平分线交⊙O于点D,若,则AC+BC=_____.
5、如图,已知,在中,,.将绕点A逆时针旋转一个角至位置,连接BD,CE交于点F.
(I)求证:;
(2)若四边形ABFE为菱形,求的值;
(3)在(2)的条件下,若,直接写出CF的值.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在Rt△ABC中,∠B=90°,∠BAC的平分线AD交BC于点D,点E在AC上,以AE为直径的⊙O经过点D.
(1)求证:
①BC是⊙O的切线;
②;
(2)若点F是劣弧AD的中点,且CE=3,试求阴影部分的面积.
2、如图1,BC是⊙O的直径,点A,P在⊙O上,且分别位于BC的两侧(点A、P均不与点B、C重合),过点A 作AQ⊥AP,交PC 的延长线于点Q,AQ交⊙O于点D,已知AB=3,AC=4.
(1)求证:△APQ∽△ABC.
(2)如图2,当点C为的中点时,求AP的长.
(3)连结AO,OD,当∠PAC与△AOD的一个内角相等时,求所有满足条件的AP的长.
3、在平面直角坐标系xOy中,的半径为2.点P,Q为外两点,给出如下定义:若上存在点M,N,使得P,Q,M,N为顶点的四边形为矩形,则称点P,Q是的“成对关联点”.
(1)如图,点A,B,C,D横、纵坐标都是整数.在点B,C,D中,与点A组成的“成对关联点”的点是______;
(2)点在第一象限,点F与点E关于x轴对称.若点E,F是的“成对关联点”,直接写出t的取值范围;
(3)点G在y轴上.若直线上存在点H,使得点G,H是的“成对关联点”,直接写出点G的纵坐标的取值范围.
4、如图1,在中,,,点D为AB边上一点.
(1)若,则______;
(2)如图2,将线段CD绕着点C逆时针旋转90°得到线段CE,连接AE,求证:;
(3)如图3,过点A作直线CD的垂线AF,垂足为F,连接BF.直接写出BF的最小值.
5、如图,在△ABC中,∠C=90°,点O为边BC上一点.以O为圆心,OC为半径的⊙O与边AB相切于点D.
(1)尺规作图:画出⊙O,并标出点D(不写作法,保留作图痕迹);
(2)在(1)所作的图中,连接CD,若CD=BD,且AC=6.求劣弧的长.
-参考答案-
一、单选题
1、C
【分析】
根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心求解.
【详解】
解:A、是中心对称图形,故A选项不合题意;
B、是中心对称图形,故B选项不合题意;
C、不是中心对称图形,故C选项符合题意;
D、是中心对称图形,故D选项不合题意;
故选:C.
【点睛】
本题考查了中心对称图形的知识,解题的关键是掌握中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180°后重合.
2、B
【分析】
由切线的性质可推出,.再根据直角三角形全等的判定条件“HL”,即可证明,即得出.
【详解】
∵PA,PB是⊙O的切线,A,B为切点,
∴,,
∴在和中,,
∴,
∴.
故选:B
【点睛】
本题考查切线的性质,三角形全等的判定和性质.熟练掌握切线的性质是解答本题的关键.
3、B
【分析】
根据同弧所对的圆周角是圆心角的一半即可得.
【详解】
解:∵,
∴,
∴,
故选:B.
【点睛】
题目主要考查圆周角定理,准确理解,熟练运用圆周角定理是解题关键.
4、B
【详解】
解:A.是轴对称图形,不是中心对称图形,故不符合题意;
B.既是轴对称图形,又是中心对称图形,故符合题意;
C.不是轴对称图形,是中心对称图形,故不符合题意;
D.是轴对称图形,不是中心对称图形,故不符合题意.
故选:B.
【点睛】
本题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
5、B
【分析】
连接OA,如图,根据切线的性质得∠PAO=90°,再利用互余计算出∠AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算∠B的度数.
【详解】
解:连接OA,如图,
∵PA是⊙O的切线,
∴OA⊥AP,
∴∠PAO=90°,
∵∠P=40°,
∴∠AOP=50°,
∵OA=OB,
∴∠B=∠OAB,
∵∠AOP=∠B+∠OAB,
∴∠B=∠AOP=×50°=25°.
故选:B.
【点睛】
本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.
6、C
【分析】
连接AF、BF,由作法可知,FE垂直平分AB,再根据可得∠AFE=45°,进而得出∠AFB=90°,根据等腰直角三角形和圆周角定理可判断哪个结论正确.
【详解】
解:连接AF、BF,由作法可知,FE垂直平分AB,
∴,故A正确;
∵CD是的高,
∴,故B正确;
∵,,
∴,故C错误;
∵,
∴∠AFE=45°,
同理可得∠BFE=45°,
∴∠AFB=90°,
,故D正确;
故选:C.
【点睛】
本题考查了作垂直平分线和圆周角定理,解题关键是明确作图步骤,熟练运用垂直平分线的性质和圆周角定理进行推理证明.
7、D
【分析】
根据反比例函数的性质,得当或者时,随着的增大而增大;根据直径所对圆周角为直角的性质,得斜边为的直角三角形顶点的轨迹是以中点为圆心,长为直径的圆;根据垂直平分线的性质,得三角形三边的垂直平分线的交点到三角形三个顶点的距离相等;根据勾股定理逆定理、完全平方公式的性质计算,可判断直角三角形,即可完成求解.
【详解】
当或者时,随着的增大而增大,故(1)不正确;
如果直角三角形斜边的长是斜边上的高的4倍,那么这个三角形两个锐角的度数分别是和;,故(2)正确;
∵圆的直径所对的圆周角为直角
∴斜边为的直角三角形顶点A的轨迹是以中点为圆心,长为直径的圆,故(3)正确;
三角形三边的垂直平分线的交点到三角形三个顶点的距离相等,故(4)正确;
∵
∴
∴以为三边长度的三角形,是直角三角形,故(5)错误;
故选:D.
【点睛】
本题考查了三角形、垂直平分线、反比例函数、圆、勾股定理逆定理的知识;解题的关键是熟练掌握反比例函数、垂直平分线、圆周角、勾股定理逆定理的性质,从而完成求解.
8、B
【分析】
根据中心对称图形与轴对称图形的定义解答即可.
【详解】
解:A.是轴对称图形,不是中心对称图形,不符合题意;
B既是中心对称图形又是轴对称图形,符合题意;
C. 是轴对称图形,不是中心对称图形,不符合题意;
D. 既不是中心对称图形,也不是轴对称图形,不符合题意.
故选B.
【点睛】
本题主要考查的是中心对称图形与轴对称图形的定义.一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫作轴对称图形;把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合叫作中心对称图形.
9、C
【分析】
过点A作AC⊥x轴于点C,设 ,则 ,根据勾股定理,可得,从而得到 ,进而得到∴ ,可得到点 ,再根据旋转的性质,即可求解.
【详解】
解:如图,过点A作AC⊥x轴于点C,
设 ,则 ,
∵ ,,
∴,
∵, ,
∴ ,
解得: ,
∴ ,
∴ ,
∴点 ,
∴将绕原点O顺时针旋转90°,则旋转后点A的对应点的坐标是,
∴将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是.
故选:C
【点睛】
本题考查坐标与图形变化一旋转,解直角三角形等知识,解题的关键是求出点A的坐标,属于中考常考题型.
10、D
【分析】
首先运用勾股定理求出AC的长度,然后结合旋转的性质得到AB= AB',BC= B'C',从而求出B'C,即可在Rt△B'C'C中利用勾股定理求解.
【详解】
解:∵在Rt△ABC中,AB=6,BC=8,
∴,
由旋转性质可知,AB= AB'=6,BC= B'C'=8,
∴B'C=10-6=4,
在Rt△B'C'C中,,
故选:D.
【点睛】
本题考查勾股定理,以及旋转的性质,掌握旋转变化的基本性质,熟练运用勾股定理求解是解题关键.
二、填空题
1、
【分析】
如图,设小圆的切线MN与小圆相切于点D,与大圆交于M、N,连接OD、OM,根据切线的性质定理和垂径定理求解即可.
【详解】
解:如图,设小圆的切线MN与小圆相切于点D,与大圆交于M、N,连接OD、OM,
则OD⊥MN,
∴MD=DN,
在Rt△ODM中,OM=180cm,OD=60cm,
∴cm,
∴cm,
即该球在大圆内滑行的路径MN的长度为cm,
故答案为:.
【点睛】
本题考查切线的性质定理、垂径定理、勾股定理,熟练掌握切线的性质和垂径定理是解答的关键.
2、-2
【分析】
由图可知,当CN⊥AB且C、M、N三点共线时,长度最小,利用勾股定理求出CN的长,故可求解.
【详解】
由图可知,当CN⊥AB且C、M、N三点共线时,长度最小
∵直线AB的解析式为
当x=0时,y=5,当y=0时,x=5
∴B(0,5),A(5,0)
∴AO=BO,△AOB是等腰直角三角形
∴∠BAO=90°
当CN⊥AB时,则△ACN是等腰直角三角形
∴CN=AN
∵C
∴AC=7
∵AC2=CN2+AN2=2CN2
∴CN=
当 C、M、N三点共线时,长度最小
即MN=CN-CM=-2
故答案为:-2.
【点睛】
此题主要考查圆与几何综合,解题的关键是根据题意找到符合题意的位置,利用等腰直角三角形的性质求解.
3、2
【分析】
根据扇形的面积公式S=,代入计算即可.
【详解】
解:∵“完美扇形”的周长等于6,
∴半径r为=2,弧长l为2,
这个扇形的面积为:==2.
答案为:2.
【点睛】
本题考查了扇形的面积公式,扇形面积公式与三角形面积公式十分类似,为了便于记忆,只要把扇形看成一个曲边三角形,把弧长l看成底,R看成底边上的高即可.
4、##
【分析】
连接,延长交于点,连接,先根据圆周角定理和圆的性质可得,再根据特殊角的三角函数值可得,从而可得,作,交于点,从而可得,然后在中,利用直角三角形的性质和勾股定理可得,设,从而可得,利用直角三角形的面积公式可求出的值,由此即可得.
【详解】
解:如图,连接,延长交于点,连接,
都是的直径,
,
,
,
在中,,
,
平分,且,
,
,
,
,
如图,作,交于点,
,
在中,,
,
设,则,
,
,
解得或(不符题意,舍去),
则,
故答案为:.
【点睛】
本题考查了特殊角的三角函数值、圆周角定理、含角的直角三角形的性质等知识点,通过作辅助线,构造直角三角形和等腰三角形是解题关键.
5、(1)见解析;(2)120°;(3)
【分析】
(1)根据旋转的性质和全等三角形的判定解答即可;
(2)根据等腰三角形的性质求得∠ABD=90°-,∠BAE=+30°,根据菱形的邻角互补求解即可;
(3)连接AF,根据菱形的性质和全等三角形的性质可求得∠FAC=45°,∠FCA=30°,过F作FG⊥AC于G,设FG=x,根据等腰直角三角形的性质和含30°角的直角三角形的性质求解即可.
【详解】
解:(1)由旋转得:AB=AD,AC=AE,∠BAD=∠CAE=,
∵AB=AC,
∴AB=AC=AD=AE,
在△ABD和△ACE中,
,
∴△ABD≌△ACE(SAS);
(2)∵AB=AD,∠BAD=,∠BAC=30°,
∴∠ABD=(180°-∠BAD)÷2=(180°-)÷2=90°-,∠BAE=+30°,
∵四边形ABFE是菱形,
∴∠BAE+∠ABD=180°,即+30°+90°-=180°,
解得:=120°;
(3)连接AF,
∵四边形ABFE是菱形,∠BAE=+30°=150°,
∴∠BAF=∠BAE=75°,又∠BAC=30°,
∴∠FAC=75°-30°=45°,
∵△ABD≌△ACE,
∴∠FCA=∠ABD=90°-=30°,
过F作FG⊥AC于G,设FG=x,
在Rt△AGF中,∠FAG=45°,∠AGF=90°,
∴∠AFG=∠FAG=45°,
∴△AGF是等腰直角三角形,
∴AG=FG=x,
在在Rt△AGF中,∠FCG=30°,∠FGC=90°,
∴CF=2FG=2x,,
∵AC=AB=2,又AG+CG=AC,
∴,
解得:,
∴CF=2x= .
【点睛】
本题考查全等三角形的判定与性质、旋转的性质、菱形的性质、等腰三角形的判定与性质、含30°角的直角三角形的性质、三角形的内角和定理、解一元一次方程等知识,熟练掌握相关知识的联系与运用是解答的关键.
三、解答题
1、(1)①见解析;②见解析;(2).
【分析】
(1)①连接OD,由角平分线的性质解得,再根据内错角相等,两直线平行,证明,继而由两直线平行,同旁内角互补证明即可解题;
②连接DE,由弦切角定理得到,再证明,由相似三角形对应边成比例解题;
(2)证明是等边三角形,四边形DOAF是菱形,,结合扇形面积公式解题.
【详解】
解:(1)①连接OD,
是∠BAC的平分线
是⊙O的切线;
②连接DE,
是⊙O的切线,
是直径
(2)连接DE、OD、DF、OF,
设圆的半径为R,
点F是劣弧AD的中点,
OF是DA中垂线
DF=AF,
是等边三角形,四边形DOAF是菱形,
.
【点睛】
本题考查圆的综合题,涉及切线的判定与性质、平行四边形的性质、等边三角形的判定与性质、相似三角形的判定与性质、扇形面积等知识,综合性较强,有难度,掌握相关知识是解题关键.
2、(1)见解析;(2)(3)当,时,;当时,.
【分析】
(1)通过证,,即可得;
(2)先证是等腰直角三角形,求,通过,得,求CQ长,即可求PQ得长,通过,即可得,即可求AP.
(3)分类讨论, ,,,三种情况讨论,再通过勾股定理和相似即可求解.
【详解】
证明:(1)∵AQ⊥AP
∴
∵BC是⊙O的直径
∴
∴
∵
∴
(2)如图,连接CD,PD
∵BC是⊙O的直径
∴
∵AB=3,AC=4
∴利用勾股定理得:,即直径为5
∵
∴
∴DP是⊙O的直径,且DP=BC=5
∵点C为的中点
∴CD=PC
∵
∴
∴是等腰直角三角形
∴利用勾股定理得:,则
∵,
∴
∵
∴
∴,即:
∴
∴
∵
∴,即:
∴
(3)连接AO,OD,OP,CD,OD交AC于点M
∵(已证)
∴OD,OP共线,为⊙O的直径
情况一:当时
∵,
∴
∴AP=PC
∵
∴
∴
∴即
∵AP=PC
∴
∴在中,
∴
∴在中,
情况二:当时,
∵
∴
∴
同情况一:
情况三:当时
∵,
∴
∴,
∵OA=OD
∴
∴
∴
综上所述,当,时,;当时,.
【点睛】
本题考查了圆周角定理,垂径定理,圆的内接四边形的性质,勾股定理,相似三角形的性质和判定等,是圆的综合题。解答此题的关键是,通过圆的性质,找到角与角、边与边之间的关系.
3、(1)B和C;(2);(3)
【分析】
(1)根据图形可确定与点A组成的“成对关联点”的点;
(2)如图,点E在直线上,点F在直线上,当点E在线段上,点F在线段上时,有的“成对关联点”,求出即可得出的取值范围;
(3)分类讨论:点G在上,点G在的下方和点G在的上方,构造的“成对关联点”,即可求出的取值范围.
【详解】
(1)如图所示:
在点B,C,D中,与点A组成的“成对关联点”的点是B和C,
故答案为:B和C;
(2)∵
∴在直线上,
∵点F与点E关于x轴对称,
∴在直线,
如下图所示:
直线和与分别交于点,,与直线分别交于,,
由题可得:,
当点E在线段上时,有的“成对关联点”
∴;
(3)
如图,当点G在上时,轴,在上不存在这样的矩形;
如图,当点G在下方时,也不存在这样的矩形;
如图,当点G在上方时,存在这样的矩形GMNH,
当恰好只能构成一个矩形时,
设,直线与y轴相交于点K,
则,,,,,
∴,即,
∴,
解得:或(舍),
综上:当时,点G,H是的“成对关联点”.
【点睛】
本题考查几何图形综合问题,属于中考压轴题,掌握“成对关联点”的定义是解题的关键.
4、
(1)5
(2)证明见解析
(3)
【分析】
(1)过C作CM⊥AB于M,根据等腰三角形的性质求出CM和DM,再根据勾股定理计算即可;
(2)连BE,先证明,即可得到直角三角形ABE,利用勾股定理证明即可;
(3)取AC中点N,连接FN、BN,根据三角形BFN中三边关系判断即可.
(1)
过C作CM⊥AB于M,
∵,
∴
∵
∴
∴在Rt中
(2)
连接BE,
∵,,,
∴,
∴
∴,
∴
在Rt中
∴
∴
(3)
取AC中点N,连接FN、BN,
∵,,
∴
∵AF垂直CD
∴
∵AC中点N,
∴
∴
∵三角形BFN中
∴
∴当B、F、N三点共线时BF最小,最小值为.
【点睛】
本题考查等腰直角三角形的常用辅助线以及直角三角形斜边上的中线,解题的关键是根据等腰直角三角形作斜边垂线或者构造“手拉手模型”.
5、(1)作图见解析;(2)
【分析】
(1)由于D点为⊙O的切点,即可得到OC=OD,且OD⊥AB,则可确定O点在∠A的角平分线上,所以应先画出∠A的角平分线,与BC的交点即为O点,再以O为圆心,OC为半径画出圆即可;
(2)连接CD和OD,根据切线长定理,以及圆的基本性质,求出∠DCB的度数,然后进一步求出∠COD的度数,并结合三角函数求出OC的长度,再运用弧长公式求解即可.
【详解】
解:(1)如图所示,先作∠A的角平分线,交BC于O点,以O为圆心,OC为半径画出⊙O即为所求;
(2)如图所示,连接CD和OD,
由题意,AD为⊙O的切线,
∵OC⊥AC,且OC为半径,
∴AC为⊙O的切线,
∴AC=AD,
∴∠ACD=∠ADC,
∵CD=BD,
∴∠B=∠DCB,
∵∠ADC=∠B+∠BCD,
∴∠ACD=∠ADC=2∠DCB,
∵∠ACB=90°,
∴∠ACD+∠DCB=90°,
即:3∠DCB=90°,
∴∠DCB=30°,
∵OC=OD,
∴∠DCB=∠ODC=30°,
∴∠COD=180°-2×30°=120°,
∵∠DCB=∠B=30°,
∴在Rt△ABC中,∠BAC=60°,
∵AO平分∠BAC,
∴∠CAO=∠DAO=30°,
∴在Rt△ACO中,,
∴.
【点睛】
本题考查复杂作图-作圆,以及圆的基本性质和切线长定理等,掌握圆的基本性质,切线的性质以及灵活运用三角函数求解是解题关键.
相关试卷
这是一份初中数学沪科版九年级下册第24章 圆综合与测试达标测试,共34页。试卷主要包含了下列说法正确的个数有等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第24章 圆综合与测试课后测评,共30页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。
这是一份数学九年级下册第24章 圆综合与测试复习练习题,共26页。试卷主要包含了下列说法正确的个数有等内容,欢迎下载使用。