年终活动
搜索
    上传资料 赚现金

    精品试题沪科版九年级数学下册第24章圆综合测评练习题(无超纲)

    精品试题沪科版九年级数学下册第24章圆综合测评练习题(无超纲)第1页
    精品试题沪科版九年级数学下册第24章圆综合测评练习题(无超纲)第2页
    精品试题沪科版九年级数学下册第24章圆综合测评练习题(无超纲)第3页
    还剩31页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学沪科版九年级下册第24章 圆综合与测试达标测试

    展开

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试达标测试,共34页。试卷主要包含了下列说法正确的个数有等内容,欢迎下载使用。
    沪科版九年级数学下册第24章圆综合测评
    考试时间:90分钟;命题人:数学教研组
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、如图,在△ABC中,∠BAC=130°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,则∠BAD的大小是(  )

    A.80° B.70° C.60° D.50°
    2、在下列图形中,既是中心对称图形又是轴对称图形的是( )
    A. B.
    C. D.
    3、如图,在Rt△ABC中,,,点D、E分别是AB、AC的中点.将△ADE绕点A顺时针旋转60°,射线BD与射线CE交于点P,在这个旋转过程中有下列结论:①△AEC≌△ADB;②CP存在最大值为;③BP存在最小值为;④点P运动的路径长为.其中,正确的( )

    A.①②③ B.①②④ C.①③④ D.②③④
    4、如图,AB,CD是⊙O的弦,且,若,则的度数为( )

    A.30° B.40° C.45° D.60°
    5、如图,DC是⊙O的直径,弦AB⊥CD于M,则下列结论不一定成立的是(    )

    A.AM=BM B.CM=DM C. D.
    6、下列图形中,可以看作是中心对称图形的是( )
    A. B. C. D.
    7、下列图形中,既是轴对称图形,又是中心对称图形的是(  )
    A. B. C. D.
    8、下列说法正确的个数有( )
    ①方程的两个实数根的和等于1;
    ②半圆是弧;
    ③正八边形是中心对称图形;
    ④“抛掷3枚质地均匀的硬币全部正面朝上”是随机事件;
    ⑤如果反比例函数的图象经过点,则这个函数图象位于第二、四象限.
    A.2个 B.3个 C.4个 D.5个
    9、下列各曲线是在平面直角坐标系xOy中根据不同的方程绘制而成的,其中是中心对称图形的是( )
    A. B.
    C. D.
    10、如图,△ABC内接于⊙O,∠BAC=30°,BC=6,则⊙O的直径等于(  )

    A.10 B.6 C.6 D.12
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,正方形ABCD的边长为1,⊙O经过点C,CM为⊙O的直径,且CM=1.过点M作⊙O的切线分别交边AB,AD于点G,H.BD与CG,CH分别交于点E,F,⊙O绕点C在平面内旋转(始终保持圆心O在正方形ABCD内部).给出下列四个结论:
    ①HD=2BG;②∠GCH=45°;③H,F,E,G四点在同一个圆上;④四边形CGAH面积的最大值为2.其中正确的结论有 _____(填写所有正确结论的序号).

    2、如图,将半径为的圆形纸片沿一条弦折叠,折叠后弧的中点与圆心重叠,则弦的长度为________.

    3、如图,已知扇形的圆心角为60°,半径为2,则图中弓形(阴影部分)的面积为______.

    4、如图,将矩形绕点A顺时针旋转到矩形的位置,旋转角为.若,则的大小为________(度).

    5、如图,PM,PN分别与⊙O相切于A,B两点,C为⊙O上异于A,B的一点,连接AC,BC.若∠P=58°,则∠ACB的大小是___________.

    三、解答题(5小题,每小题10分,共计50分)
    1、定理:一条弧所对的圆周角等于这条弧所对的圆心角的一半.如图1,∠A=∠O.
    已知:如图2,AC是⊙O的一条弦,点D在⊙O上(与A、C不重合),联结DE交射线AO于点E,联结OD,⊙O的半径为5,tan∠OAC=.

    (1)求弦AC的长.
    (2)当点E在线段OA上时,若△DOE与△AEC相似,求∠DCA的正切值.
    (3)当OE=1时,求点A与点D之间的距离(直接写出答案).
    2、如图,在方格纸中,已知顶点在格点处的△ABC,请画出将△ABC绕点C旋转180°得到的△A'B'C'.(需写出△A'B'C'各顶点的坐标).

    3、正方形绿化场地拟种植两种不同颜色(用阴影部分和非阴影部分表示)的花卉,要求种植的花卉能组成轴对称或中心对称图案,下面是三种不同设计方案中的一部分.

    (1)请把图①、图②补成既是轴对称图形,又是中心对称图形,并画出一条对称轴;
    (2)把图③补成只是中心对称图形,并把中心标上字母P.
    4、问题:如图,是的直径,点在内,请仅用无刻度的直尺,作出中边上的高.
    小芸解决这个问题时,结合圆以及三角形高线的相关知识,设计了如下作图过程.
    作法:如图,
    ①延长交于点,延长交于点;
    ②分别连接,并延长相交于点;
    ③连接并延长交于点.

    所以线段即为中边上的高.
    (1)根据小芸的作法,补全图形;
    (2)完成下面的证明.
    证明:∵是的直径,点,在上,
    ∴________°.(______)(填推理的依据)
    ∴,.
    ∴,________是的两条高线.
    ∵,所在直线交于点,
    ∴直线也是的高所在直线.
    ∴是中边上的高.
    5、如图①,在Rt△ABC中,∠BAC = 90°,AB = k·AC,△ADE是由△ABC绕点A逆时针旋转某个角度得到的,BC与DE交于点F,直线BD与EC交于点G
    (1)求证:BD = k·EC;
    (2)求∠CGD的度数;
    (3)若k = 1(如图②),求证:A,F,G三点在同一直线上.


    -参考答案-
    一、单选题
    1、A
    【分析】
    根据三角形旋转得出,,根据点A,D,E在同一条直线上利用邻补角关系求出,根据等腰三角形的性质即可得到∠DAC=50°,由此即可求解.
    【详解】
    证明:∵绕点C逆时针旋转得到,
    ∴,,
    ∴∠ADC=∠DAC,
    ∵点A,D,E在同一条直线上,
    ∴,
    ∴∠DAC=50°,
    ∴∠BAD=∠BAC-∠DAC=80°
    故选A.
    【点睛】
    本题考查三角形旋转性质,邻补角的性质,等腰三角形的性质与判定,解题的关键在于熟练掌握旋转的性质.
    2、B
    【分析】
    根据中心对称图形与轴对称图形的定义解答即可.
    【详解】
    解:A.是轴对称图形,不是中心对称图形,不符合题意;
    B既是中心对称图形又是轴对称图形,符合题意;
    C. 是轴对称图形,不是中心对称图形,不符合题意;
    D. 既不是中心对称图形,也不是轴对称图形,不符合题意.
    故选B.
    【点睛】
    本题主要考查的是中心对称图形与轴对称图形的定义.一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫作轴对称图形;把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合叫作中心对称图形.
    3、B
    【分析】
    根据,,点D、E分别是AB、AC的中点.得出∠DAE=90°,AD=AE=,可证∠DAB=∠EAC,再证△DAB≌△EAC(SAS),可判断①△AEC≌△ADB正确;作以点A为圆心,AE为半径的圆,当CP为⊙A的切线时,CP最大,根据△AEC≌△ADB,得出∠DBA=∠ECA,可证∠P=∠BAC=90°,CP为⊙A的切线,证明四边形DAEP为正方形,得出PE=AE=3,在Rt△AEC中,CE=,可判断②CP存在最大值为正确;△AEC≌△ADB,得出BD=CE=,在Rt△BPC中,BP最小=可判断③BP存在最小值为不正确;取BC中点为O,连结AO,OP,AB=AC=6,∠BAC=90°,BP=CO=AO=,当AE⊥CP时,CP与以点A为圆心,AE为半径的圆相切,此时sin∠ACE=,可求∠ACE=30°,根据圆周角定理得出∠AOP=2∠ACE=60°,当AD⊥BP′时,BP′与以点A为圆心,AE为半径的圆相切,此时sin∠ABD=,可得∠ABD=30°根据圆周角定理得出∠AOP′=2∠ABD=60°,点P在以点O为圆心,OA长为半径,的圆上运动轨迹为,L可判断④点P运动的路径长为正确即可.
    【详解】
    解:∵,,点D、E分别是AB、AC的中点.
    ∴∠DAE=90°,AD=AE=,
    ∴∠DAB+∠BAE=90°,∠BAE+∠EAC=90°,
    ∴∠DAB=∠EAC,
    在△DAB和△EAC中,

    ∴△DAB≌△EAC(SAS),
    故①△AEC≌△ADB正确;

    作以点A为圆心,AE为半径的圆,当CP为⊙A的切线时,CP最大,
    ∵△AEC≌△ADB,
    ∴∠DBA=∠ECA,
    ∴∠PBA+∠P=∠ECP+∠BAC,
    ∴∠P=∠BAC=90°,
    ∵CP为⊙A的切线,
    ∴AE⊥CP,
    ∴∠DPE=∠PEA=∠DAE=90°,
    ∴四边形DAEP为矩形,
    ∵AD=AE,
    ∴四边形DAEP为正方形,
    ∴PE=AE=3,
    在Rt△AEC中,CE=,
    ∴CP最大=PE+EC=3+,
    故②CP存在最大值为正确;

    ∵△AEC≌△ADB,
    ∴BD=CE=,
    在Rt△BPC中,BP最小=,
    BP最短=BD-PD=-3,
    故③BP存在最小值为不正确;
    取BC中点为O,连结AO,OP,
    ∵AB=AC=6,∠BAC=90°,
    ∴BP=CO=AO=,
    当AE⊥CP时,CP与以点A为圆心,AE为半径的圆相切,此时sin∠ACE=,
    ∴∠ACE=30°,
    ∴∠AOP=2∠ACE=60°,
    当AD⊥BP′时,BP′与以点A为圆心,AE为半径的圆相切,此时sin∠ABD=,
    ∴∠ABD=30°,
    ∴∠AOP′=2∠ABD=60°,
    ∴点P在以点O为圆心,OA长为半径,的圆上运动轨迹为,
    ∵∠POP=∠POA+∠AOP′=60°+60°=120°,
    ∴L.
    故④点P运动的路径长为正确;
    正确的是①②④.
    故选B.

    【点睛】
    本题考查图形旋转性质,线段中点定义,三角形全等判定与性质,圆的切线,正方形判定与性质,勾股定理,锐角三角函数,弧长公式,本题难度大,利用辅助线最长准确图形是解题关键.
    4、B
    【分析】
    由同弧所对的圆周角是圆心角的一半可得,利用平行线的性质:两直线平行,内错角相等即可得.
    【详解】
    解:∵,
    ∴,
    ∵,
    ∴,
    故选:B.
    【点睛】
    题目主要考查圆周角定理,平行线的性质等,理解题意,找出相关的角度是解题关键.
    5、B
    【分析】
    根据垂径定理“垂直于弦的直径平分这条弦,并且平分弦所对的两条弧”进行判断即可得.
    【详解】
    解:∵弦AB⊥CD,CD过圆心O,
    ∴AM=BM,,,
    即选项A、C、D选项说法正确,不符合题意,
    当根据已知条件得CM和DM不一定相等,
    故选B.
    【点睛】
    本题考查了垂径定理,解题的关键是掌握垂径定理.
    6、B
    【分析】
    把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解.
    【详解】
    A.不是中心对称图形,故本选项不符合题意;
    B.是中心对称图形,故本选项符合题意;
    C.不是中心对称图形,故本选项不符合题意;
    D.不是中心对称图形,故本选项不符合题意.
    故选:B.
    【点睛】
    本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.
    7、C
    【详解】
    解:选项A是轴对称图形,不是中心对称图形,故A不符合题意;
    选项B不是轴对称图形,是中心对称图形,故B不符合题意;
    选项C既是轴对称图形,也是中心对称图形,故C符合题意;
    选项D是轴对称图形,不是中心对称图形,故D不符合题意;
    故选C
    【点睛】
    本题考查的是轴对称图形的识别,中心对称图形的识别,掌握“轴对称图形与中心对称图形的定义”是解本题的关键,轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能够完全重合;中心对称图形:把一个图形绕某点旋转后能与自身重合.
    8、B
    【分析】
    根据所学知识对五个命题进行判断即可.
    【详解】
    1、Δ=12-4×1=-3

    相关试卷

    数学第24章 圆综合与测试同步练习题:

    这是一份数学第24章 圆综合与测试同步练习题,共32页。试卷主要包含了点P关于原点O的对称点的坐标是等内容,欢迎下载使用。

    初中数学沪科版九年级下册第24章 圆综合与测试练习题:

    这是一份初中数学沪科版九年级下册第24章 圆综合与测试练习题,共31页。试卷主要包含了下列图形中,是中心对称图形的是等内容,欢迎下载使用。

    2021学年第24章 圆综合与测试课时作业:

    这是一份2021学年第24章 圆综合与测试课时作业,共30页。试卷主要包含了点P关于原点O的对称点的坐标是,在圆内接四边形ABCD中,∠A等内容,欢迎下载使用。

    文档详情页底部广告位
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map