沪科版九年级下册第24章 圆综合与测试课时训练
展开
这是一份沪科版九年级下册第24章 圆综合与测试课时训练,共24页。
沪科版九年级数学下册第24章圆专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,与的两边分别相切,其中OA边与相切于点P.若,,则OC的长为( )A.8 B. C. D.2、如图,在△ABC中,∠BAC=130°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,则∠BAD的大小是( )A.80° B.70° C.60° D.50°3、若的圆心角所对的弧长是,则此弧所在圆的半径为( )A.1 B.2 C.3 D.44、如图,在中,,,将绕点C逆时针旋转90°得到,则的度数为( )A.105° B.120° C.135° D.150°5、图2是由图1经过某一种图形的运动得到的,这种图形的运动是( )A.平移 B.翻折 C.旋转 D.以上三种都不对6、下列四个图案中,是中心对称图形的是( )A. B.C. D.7、在半径为6cm的圆中,的圆心角所对弧的弧长是( )A.cm B.cm C.cm D.cm8、利用定理“同弧所对圆心角是圆周角的两倍”,可以直接推导出的命题是( )A.直径所对圆周角为 B.如果点在圆上,那么点到圆心的距离等于半径C.直径是最长的弦 D.垂直于弦的直径平分这条弦9、如图,在Rt中,.以点为圆心,长为半径的圆交于点,则的长是( )A.1 B. C. D.210、如图,点A、B、C在上,,则的度数是( )A.100° B.50° C.40° D.25°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图所示,AB是⊙O的直径,弦CD⊥AB于H,∠A=30°,OH=1,则⊙O的半径是______.2、如图,半圆O中,直径AB=30,弦CD∥AB,长为6π,则由与AC,AD围成的阴影部分面积为_______.3、如图,在⊙O中,弦AB⊥OC于E点,C在圆上,AB=8,CE=2,则⊙O的半径AO=___________.4、《九章算术》是我国古代的数学名著,书中有这样的一个问题:“今有勾八步,股十五步,问勾中容圆径几何?”.其意思是:“如图,现有直角三角形,勾(短直角边)长为 8 步,股(长直角边)长为 15 步,问该直角三角形所能容纳的最大圆的直径是多少?”答:该直角三角形所能容纳的最大圆的直径是______步.5、边长为2的正三角形的外接圆的半径等于___.三、解答题(5小题,每小题10分,共计50分)1、如图,已知AB是⊙O的直径,⊙O过BC的中点D,且.(1)求证:DE是⊙O的切线;(2)若,,求的半径.2、如图,四边形ABCD内接于⊙O,AC是直径,点C是劣弧BD的中点.(1)求证:.(2)若,,求BD.3、如图,在直角坐标系中,将△ABC绕点A顺时针旋转90°.(1)画出旋转后的△AB1C1,并写出B1、C1的坐标;(2)求线段AB在旋转过程中扫过的面积.4、如图,在等边三角形ABC中,点P为△ABC内一点,连接AP,BP,CP,将线段AP绕点A 顺时针旋转60°得到 ,连接 .(1)用等式表示 与CP的数量关系,并证明;(2)当∠BPC=120°时, ①直接写出 的度数为 ;②若M为BC的中点,连接PM,请用等式表示PM与AP的数量关系,并证明.5、在所给的的正方形网格中,按下列要求操作:(单位正方形的边长为1)(1)请在第二象限内的格点上找一点,使是以为底的等腰三角形,且腰长是无理数,求点的坐标;(2)画出以点为中心,旋转180°后的,并求的面积. -参考答案-一、单选题1、C【分析】如图所示,连接CP,由切线的性质和切线长定理得到∠CPO=90°,∠COP=45°,由此推出CP=OP=4,再根据勾股定理求解即可.【详解】解:如图所示,连接CP,∵OA,OB都是圆C的切线,∠AOB=90°,P为切点,∴∠CPO=90°,∠COP=45°,∴∠PCO=∠COP=45°,∴CP=OP=4,∴,故选C.【点睛】本题主要考查了切线的性质,切线长定理,等腰直角三角形的性质与判定,勾股定理,熟知切线长定理是解题的关键.2、A【分析】根据三角形旋转得出,,根据点A,D,E在同一条直线上利用邻补角关系求出,根据等腰三角形的性质即可得到∠DAC=50°,由此即可求解.【详解】证明:∵绕点C逆时针旋转得到,∴,,∴∠ADC=∠DAC,∵点A,D,E在同一条直线上,∴,∴∠DAC=50°,∴∠BAD=∠BAC-∠DAC=80°故选A.【点睛】本题考查三角形旋转性质,邻补角的性质,等腰三角形的性质与判定,解题的关键在于熟练掌握旋转的性质.3、C【分析】先设半径为r,再根据弧长公式建立方程,解出r即可【详解】设半径为r,则周长为2πr,120°所对应的弧长为解得r=3故选C【点睛】本题考查弧长计算,牢记弧长公式是本题关键.4、B【分析】由题意易得,然后根据三角形外角的性质可求解.【详解】解:由旋转的性质可得:,∴;故选B.【点睛】本题主要考查旋转的性质及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键.5、C【详解】解:根据图形可知,这种图形的运动是旋转而得到的,故选:C.【点睛】本题考查了图形的旋转,熟记图形的旋转的定义(把一个平面图形绕平面内某一点转动一个角度,叫做图形的旋转)是解题关键.6、A【分析】中心对称图形是指绕一点旋转180°后得到的图形与原图形能够完全重合的图形,由此判断即可.【详解】解:根据中心对称图形的定义,可知A选项的图形为中心对称图形,故选:A.【点睛】本题考查中心对称图形的识别,掌握中心对称图形的基本定义是解题关键.7、C【分析】直接根据题意及弧长公式可直接进行求解.【详解】解:由题意得:的圆心角所对弧的弧长是;故选C.【点睛】本题主要考查弧长计算,熟练掌握弧长计算公式是解题的关键.8、A【分析】定理“同弧所对圆心角是圆周角的两倍”是圆周角定理,分析各个选项即可.【详解】A选项,直径所在的圆心角是180°,直接可以由圆周角定理推导出:直径所对的圆周角为,A选项符合要求;B、C选项,根据圆的定义可以得到;D选项,是垂径定理;故选:A【点睛】本题考查圆的基本性质,熟悉圆周角定理及其推论是解题的关键.9、B【分析】利用三角函数及勾股定理求出BC、AB,连接CD,过点C作CE⊥AB于E,利用,求出BE,根据垂径定理求出BD即可得到答案.【详解】解: 在Rt中,,∴BC=3,,连接CD,过点C作CE⊥AB于E,∵,∴, 解得,∵CB=CD,CE⊥AB,∴,∴,故选:B.【点睛】此题考查了锐角三角函数,勾股定理,垂径定理,熟记各定理并熟练应用是解题的关键.10、C【分析】先根据圆周角定理求出∠AOB的度数,再由等腰三角形的性质即可得出结论.【详解】∵∠ACB=50°,∴∠AOB=100°,∵OA=OB,∴∠OAB=∠OBA= 40°,故选:C.【点睛】本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.二、填空题1、2【分析】连接OC,利用半径相等以及三角形的外角性质求得∠COH=60°,∠OCH=30°,利用30度角的直角三角形的性质即可求解.【详解】解:连接OC,∵OA=OC,∠A=30°,∴∠COH=2∠A=60°,∵弦CD⊥AB于H,∴∠OHC=90°,∴∠OCH=30°,∵OH=1,∴OC=2OH=2,故答案为:2.【点睛】本题考查了垂径定理和含30°角的直角三角形的性质.熟练掌握垂径定理是解题的关键.2、45【分析】连接OC,OD,根据同底等高可知S△ACD=S△OCD,把阴影部分的面积转化为扇形OCD的面积,利用扇形的面积公式S=来求解.【详解】解:连接OC,OD,∵直径AB=30,∴OC=OD=,∴CD∥AB,∴S△ACD=S△OCD,∵长为6π,∴阴影部分的面积为S阴影=S扇形OCD=,故答案为:45π.【点睛】本题主要考查了扇形的面积公式,正确理解阴影部分的面积=扇形COD的面积是解题的关键.3、5【分析】设⊙O的半径为r,则OA=r,OD=r-2,先由垂径定理得到AD=BD=AB=4,再由勾股定理得到42+(r-2)2=r2,然后解方程即可.【详解】解:设⊙O的半径为r,则OC=OA=r,OE=OC-CE=r-2,∵OC⊥AB,AB=8,∴AE=BE=AB=4,在Rt△OAE中,由勾股定理得:42+(r-2)2=r2,解得:r=5,即⊙O的半径长为5,故答案为:5.【点睛】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.4、6【分析】依题意,直角三角形性质,结合题意能够容纳的最大为内切圆,结合内切圆半径,利用等积法求解即可;【详解】设直角三角形中能容纳最大圆的半径为:; 依据直角三角形的性质:可得斜边长为:依据直角三角形面积公式:,即为;内切圆半径面积公式:,即为;所以,可得:,所以直径为:;故填:6;【点睛】本题主要考查直角三角形及其内切圆的性质,重点在理解题意和利用内切圆半径求解面积;5、【分析】过圆心作一边的垂线,根据勾股定理可以计算出外接圆半径.【详解】如图所示,是正三角形,故O是的中心,,∵正三角形的边长为2,OE⊥AB∴,,∴,由勾股定理得:,∴,∴,∴(负值舍去).故答案为:.【点睛】本题考查了正多边形和圆,解题的关键是根据题意画出图形,利用数形结合求解.三、解答题1、(1)证明见解析;(2).【分析】(1)连接,只要证明即可.此题可运用三角形的中位线定理证,因为,所以.(2)根据直角三角形中角所对的直角边等于斜边的一半及勾股定理可分别求出的长和、的长,即可根据中位线性质求出的长,即的半径长.【详解】(1)证明:连接.因为是的中点,是的中点,,.,.,是圆的半径,是的切线.(2)如图,,,,,,且,,,且,∴,,,∴ ,的半径长为.【点睛】本题考查了切线的判定、直角三角形中角所对的直角边等于斜边的一半、勾股定理等知识.要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证它们垂直即可解决问题.2、(1)见详解;(2)【分析】(1)由题意及垂径定理可知AC垂直平分BD,进而问题可求解;(2)由题意易得,然后由(1)可知△ABD是等边三角形,进而问题可求解.【详解】(1)证明:∵AC是直径,点C是劣弧BD的中点,∴AC垂直平分BD,∴;(2)解:∵,,∴,∵,∴△ABD是等边三角形,∵,∴.【点睛】本题主要考查垂径定理、等边三角形的性质与判定及圆周角定理,熟练掌握垂径定理、等边三角形的性质与判定及圆周角定理是解题的关键.3、(1)作图见解析,、;(2)【分析】(1)将绕点A顺时针旋转90°得,根据点A、B、C坐标,即可确定出点、的坐标;(2)根据勾股定理求出AB的长,由扇形面积公式即可得出答案.【详解】(1)将绕点A顺时针旋转90°得如图所示:∴、;(2)由图可知:,∴线段AB在旋转过程中扫过的面积为.【点睛】本题考查作旋转图形以及扇形的面积公式,掌握旋转的性质及扇形的面积公式是解题的关键.4、(1),理由见解析;(2)①60°;②PM=,见解析【分析】(1)根据等边三角形的性质,可得AB=AC,∠BAC=60°,再由由旋转可知:从而得到,可证得,即可求解 ;(2)①由∠BPC=120°,可得∠PBC+∠PCB=60°.根据等边三角形的性质,可得∠BAC=60°,从而得到∠ABC+∠ACB=120°,进而得到∠ABP+∠ACP=60°.再由,可得 ,即可求解;②延长PM到N,使得NM=PM,连接BN.可先证得△PCM≌△NBM.从而得到CP=BN,∠PCM=∠NBM.进而得到 .根据①可得,可证得,从而得到 .再由 为等边三角形,可得 .从而得到 ,即可求解.【详解】解:(1) .理由如下:在等边三角形ABC中,AB=AC,∠BAC=60°,由旋转可知: ∴即在和△ACP中 ∴ .∴ .(2)①∵∠BPC=120°,∴∠PBC+∠PCB=60°.∵在等边三角形ABC中,∠BAC=60°,∴∠ABC+∠ACB=120°,∴∠ABP+∠ACP=60°.∵ .∴ ,∴∠ABP+∠ABP'=60°.即 ;②PM= .理由如下:如图,延长PM到N,使得NM=PM,连接BN.∵M为BC的中点,∴BM=CM.在△PCM和△NBM中 ∴△PCM≌△NBM(SAS).∴CP=BN,∠PCM=∠NBM.∴ .∵∠BPC=120°,∴∠PBC+∠PCB=60°.∴∠PBC+∠NBM=60°.即∠NBP=60°.∵∠ABC+∠ACB=120°,∴∠ABP+∠ACP=60°.∴∠ABP+∠ABP'=60°.即 .∴ .在△PNB和 中 ∴ (SAS).∴ .∵ ∴ 为等边三角形,∴ .∴ ,∴PM= .【点睛】本题主要考查了等边三角形判定和性质,全等三角形的判定和性质,图形的旋转,熟练掌握等边三角形判定和性质定理,全等三角形的判定和性质定理,图形的旋转的性质是解题的关键.5、(1)图见解析,点的坐标为(2)图见解析,4【分析】(1)根据题意,腰长为无理数且为以AB为底的等腰三角形,只在第二象限,作图即可确定点,然后写出点的坐标即可;(2)现确定旋转后的点,然后依次连接即可,根据旋转前后三角形的面积不变,利用表格及勾股定理确定三角形的底和高,即可得出面积.(1)解:如图所示,点的坐标为;,为无理数,符合题意;(2)如图所示:点的坐标,点的坐标为,∵旋转180°后的的面积等于的面积, ,∴,∴的面积为4.【点睛】题目主要考查等腰三角形的定义及旋转图形的作法,理解题意,熟练掌握在坐标系中旋转图形的作法是解题关键.
相关试卷
这是一份初中数学沪科版九年级下册第24章 圆综合与测试综合训练题,共34页。
这是一份沪科版九年级下册第24章 圆综合与测试课时练习,共39页。试卷主要包含了下列叙述正确的有个.等内容,欢迎下载使用。
这是一份初中数学沪科版九年级下册第24章 圆综合与测试随堂练习题,共33页。